|
|
形貌可控NaNbO3的生长机理和光催化性能 |
张婷婷1,祁阳1( ),刘刚2,刘鸣华2 |
1 东北大学材料科学与工程学院材料物理与化学研究所 沈阳 1108192 国家纳米科学中心 北京 100190 |
|
Growth Mechanism and Photocatalytic Activity of NaNbO3 with Controllable Morphology |
Tingting ZHANG1,Yang QI1( ),Gang LIU2,Minghua LIU2 |
1 Institute of Materials Physics and Chemistry, School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China 2 National Center for Nanoscience and Technology, Beijing 100190, China |
引用本文:
张婷婷,祁阳,刘刚,刘鸣华. 形貌可控NaNbO3的生长机理和光催化性能[J]. 金属学报, 2017, 53(3): 376-384.
Tingting ZHANG,
Yang QI,
Gang LIU,
Minghua LIU.
Growth Mechanism and Photocatalytic Activity of NaNbO3 with Controllable Morphology[J]. Acta Metall Sin, 2017, 53(3): 376-384.
[1] | Chen C C, Ma W H, Zhao J C.Semiconductor-mediated photodegradation of pollutants under visible-light irradiation[J]. Chem. Soc. Rev., 2010, 39: 4206 | [2] | Ma Y, Wang X L, Jia Y S, et al.Titanium dioxide-based nanomaterials for photocatalytic fuel generations[J]. Chem. Rev., 2014, 114: 9987 | [3] | Shaham-Waldmann N, Paz Y.Away from TiO2: A critical minireview on the developing of new photocatalysts for degradation of contaminants in water[J]. Mater. Sci. Semicond. Process., 2016, 42: 72 | [4] | Jung J H, Lee M, Hong J I, et al.Lead-free NaNbO3 nanowires for a high output piezoelectric nanogenerator[J]. ACS Nano, 2011, 5: 10041 | [5] | Zeng W, Tao X-M, Chen S, et al.Highly durable all-fiber nanogenerator for mechanical energy harvesting[J]. Energy Environ. Sci., 2013, 6: 2631 | [6] | Dutto F, Raillon C, Schenk K, et al.Nonlinear optical response in single alkaline niobate nanowires[J]. Nano Lett., 2011, 11: 2517 | [7] | Yan C L, Nikolova L, Dadvand A, et al.Multiple NaNbO3/Nb2O5 heterostructure nanotubes: A new class of ferroelectric/semiconductor nanomaterials[J]. Adv. Mater., 2010, 22: 1741 | [8] | Grabowska E.Selected perovskite oxides: Characterization, preparation and photocatalytic properties——A review[J]. Appl. Catal., 2016, 186B: 97 | [9] | Shi H F, Wang T Z, Chen J, et al.Photoreduction of carbon dioxide over NaNbO3 nanostructured photocatalysts[J]. Catal. Lett., 2011, 141: 525 | [10] | Li G Q, Yi Z G, Bai Y, et al.Anisotropy in photocatalytic oxidization activity of NaNbO3 photocatalyst[J]. Dalton Trans., 2012, 41: 10194 | [11] | Li P, Ouyang S X, Xi G C, et al.The effects of crystal structure and electronic structure on photocatalytic H2 evolution and CO2 reduction over two phases of perovskite-structured NaNbO3[J]. J. Phys. Chem., 2012, 116C: 7621 | [12] | Shi H F, Lan B Y, Zhang C L, et al.Nitrogen doping concentration influence on NaNbO3 from first-principle calculations[J]. J. Phys. Chem. Solids, 2014, 75: 74 | [13] | Li G Q.Photocatalytic properties of NaNbO3 and Na0.6Ag0.4NbO3 synthesized by polymerized complex method[J]. Mater. Chem. Phys., 2010, 121: 42 | [14] | Zielińska B, Borowiak-Palen E, Kalenczuk R J.Preparation, characterization and photocatalytic activity of metal-loaded NaNbO3[J]. J. Phys. Chem. Solids, 2011, 72: 117 | [15] | Lv J, Kako T, Li Z S, et al.Synthesis and photocatalytic activities of NaNbO3 rods modified by In2O3 nanoparticles[J]. J. Phys. Chem., 2010, 114C: 6157 | [16] | Jiang L Q, Qiu Y, Yi Z G.Potassium niobate nanostructures: Controllable morphology, growth mechanism, and photocatalytic activity[J]. J. Mater. Chem., 2013, 1A: 2878 | [17] | Zhou X M, Lan J Y, Liu G, et al.Facet-mediated photodegradation of organic dye over hematite architectures by visible light[J]. Angew. Chem., Int. Ed., 2012, 51: 178 | [18] | Lei W Y, Zhang T T, Gu L, et al.Surface-structure sensitivity of CeO2 nanocrystals in photocatalysis and enhancing the reactivity with nanogold[J]. ACS Catal., 2015, 5: 4385 | [19] | Shi H F, Li X K, Wang D F, et al.NaNbO3 nanostructures: Facile synthesis, characterization, and their photocatalytic properties[J]. Catal. Lett., 2009, 132: 205 | [20] | Xiao Q, Jaatinen E, Zhu H Y.Direct photocatalysis for organic synthesis by using plasmonic-metal nanoparticles irradiated with visible light[J]. Chem. Asian J., 2014, 9: 3046 | [21] | Shiratori Y, Magrez A, Dornseiffer J, et al.Polymorphism in micro-, submicro-, and nanocrystalline NaNbO3[J]. J. Phys. Chem., 2005, 109B: 20122 | [22] | Rodriguez J A, Ramírez P J, Asara G G, et al.Charge polarization at a Au-TiC interface and the generation of highly active and selective catalysts for the low-temperature water-gas shift reaction[J]. Angew. Chem., Int. Ed., 2014, 53: 11270 | [23] | Zhu H Y, Zheng Z F, Gao X P, et al.Structural evolution in a hydrothermal reaction between Nb2O5 and NaOH solution: From Nb2O5 grains to microporous Na2Nb2O62/3H2O fibers and NaNbO3 cubes[J]. J. Am. Chem. Soc., 2006, 128: 2373 | [24] | Xu H W, Nyman M, Nenoff T M, et al.Prototype sandia octahedral molecular sieve (SOMS) Na2Nb2O6·H2O: Synthesis, structure and thermodynamic stability[J]. Chem. Mater., 2004, 16: 2034 | [25] | Shi H F, Chen G Q, Zhang C L, et al.Polymeric g-C3N4 coupled with NaNbO3 nanowires toward enhanced photocatalytic reduction of CO2 into renewable fuel[J]. ACS Catal., 2014, 4: 3637 | [26] | Bannat I, Wessels K, Oekermann T, et al.Improving the photocatalytic performance of mesoporous titania films by modification with gold nanostructures[J]. Chem. Mater., 2009, 21: 1645 | [27] | Turchi C S, Ollis D F.Photocatalytic degradation of organic water contaminants: Mechanisms involving hydroxyl radical attack[J]. J. Catal., 1990, 122: 178 | [28] | Qu Y Q, Duan X F.Progress, challenge and perspective of heterogeneous photocatalysts[J]. Chem. Soc. Rev., 2013, 42: 2568 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|