Please wait a minute...
金属学报  2016, Vol. 52 Issue (11): 1459-1466    DOI: 10.11900/0412.1961.2016.00033
  本期目录 | 过刊浏览 |
Fe-B-Si-Nb块体非晶合金的成分设计与优化*
耿遥祥1(),王英敏2,羌建兵2,董闯2,汪海斌1,特古斯3
1 江苏科技大学材料科学与工程学院, 镇江 212003
2 大连理工大学三束材料改性教育部重点实验室, 大连 116024
3 内蒙古师范大学内蒙古自治区功能材料物理与化学重点实验室, 呼和浩特 010022
COMPOSITION DESIGN AND OPTIMIZATION OF Fe-B-Si-Nb BULK AMORPHOUS ALLOYS
Yaoxiang GENG1(),Yingmin WANG2,Jianbing QIANG2,Chuang DONG2,Haibin WANG1,Ojied TEGUS3
1 School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
2 Key Lab of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian 116024, China
3 Inner Mongolia Key Laboratory for Physics and Chemistry of Functional Materials, Inner Mongolia Normal University, Hohhot 010022, China
全文: PDF(1100 KB)   HTML
摘要: 

利用“团簇加连接原子”模型设计和优化具有高形成能力的Fe-B-Si-Nb块体非晶合金. 以源于Fe-B二元共晶相的Fe2B局域结构为基础, 结合电子浓度判据, 构建Fe-B二元理想非晶团簇式[B-B2Fe8]Fe; 考虑到原子间混合焓的大小, 选择Si和Nb原子分别替代[B-B2Fe8]团簇的中心原子B和壳层原子Fe, 得到[Si-B2Fe8-xNbx]Fe系列四元非晶成分. 结果表明, [Si-B2Fe8-xNbx]Fe团簇式在x=0.2~1.2成分处均可形成块体非晶合金, 其中在x=0.4~0.5的成分区间内均可形成临界尺寸为2.5 mm的块体非晶合金. 考虑到原子半径的大小, 鉴于增加Nb的同时降低Si的含量可维持[Si-B2Fe7.6Nb0.4]Fe非晶团簇结构的拓扑密堆性, 由此得到另一系列[(Si1-yBy)-B2Fe8-xNbx]Fe团簇式成分. 结果表明, 在(x=0.5, y=0.05)~(x=0.9, y=0.25)成分区间内均可通过Cu模铸造法获得直径为2.5 mm的块体非晶. 新设计获得的Fe-B-Si-Nb块体非晶合金具有优良的室温软磁性能和力学性能, 其中[Si-B2Fe8-xNbx]Fe (x=0.2~0.6)非晶合金的饱和磁化强度为1.14~1.46 T, 矫顽力为1.6~6.7 A/m; [(Si0.95B0.05)-B2Fe7.5Nb0.5]Fe块体非晶合金的室温压缩断裂强度达4220 MPa, 塑性形变约为0.5%.

关键词 团簇加连接原子”模型, Fe-B-Si-Nb块体非晶合金, 力学性能, 软磁性能    
Abstract

Fe-based amorphous alloys are well known for their good magnetic properties including ultrahigh saturation magnetization, low coercive force, high magnetic permeability and low core loss. But these alloys were only prepared into ribbon form in early times due to their insufficient glass-forming abilities (GFAs). The present work focuses on the design of Fe-B-Si-Nb bulk metallic glasses with good soft magnetic properties and high glass-forming ability. Glass formation in Fe-B system is first considered with cluster-plus-glue-atom model. A basic composition formula [B-B2Fe8]Fe is proposed as the framework for multi-component alloy design. Considering the structural stability of the model glass, Si and Nb are introduced to the [B-B2Fe8] cluster to replace the center B and shell Fe atoms, from which a series of Fe-B-Si-Nb alloys with composition formulas [Si-B2Fe8-xNbx]Fe (x=0.1~1.2) are derived. Copper mold casting experiments revealed that bulk glass alloys with a critical diameter (dc) exceeding 1.0 mm are readily obtained with the Nb content range of x=0.2~1.2, the largest dc (about 2.5 mm) appears in the vicinity of x=0.4~0.5. Considering the local packing efficiency of Fe-B-Si-Nb glass model structure, another series alloy compositions, namely, [(Si1-yBy)-B2Fe8-xNbx]Fe is reached by increasing Nb and decreasing Si simultaneously in [Si-B2Fe7.6Nb0.4]Fe basal glass alloys. The experimental results show that bulk glass alloys with dc=2.5 mm are available over a wide range of compositions from (x=0.5, y=0.05) to (x=0.9, y=0.25). Excellent magnetic softness with high saturation magnetizations (Bs=1.14~1.46 T) and low coercive forces (Hc=1.6~6.7 A/m) is found in the [Si-B2Fe8-xNbx]Fe (x=0.2~0.6) series glass alloys. A high fracture strength of 4220 MPa with a plasticity of 0.5% is observed in the [(Si0.95B0.05)-B2Fe7.5Nb0.5]Fe bulk glass alloy.

Key wordscluster-plus-glue-atom    model,    Fe-B-Si-Nb    bulk    glass    alloy,    mechanical    property,    soft    magnetic    property
收稿日期: 2016-01-20     
基金资助:* 国家自然科学基金项目51131002, 中央高校基础研究基金项目DUT16ZD209和DUT13ZD102, 中国工程物理研究院重点发展基金项目2013A03010115, 国际热核聚变实验堆计划项目2013GB107003和西北工业大学凝固技术国家重点实验室开放课题项目SKLSP201607资助

引用本文:

耿遥祥,王英敏,羌建兵,董闯,汪海斌,特古斯. Fe-B-Si-Nb块体非晶合金的成分设计与优化*[J]. 金属学报, 2016, 52(11): 1459-1466.
Yaoxiang GENG, Yingmin WANG, Jianbing QIANG, Chuang DONG, Haibin WANG, Ojied TEGUS. COMPOSITION DESIGN AND OPTIMIZATION OF Fe-B-Si-Nb BULK AMORPHOUS ALLOYS. Acta Metall Sin, 2016, 52(11): 1459-1466.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2016.00033      或      https://www.ams.org.cn/CN/Y2016/V52/I11/1459

图1  不同临界尺寸[Si-B2Fe8-xNbx]Fe和[(Si1-yBy)-B2Fe8-xNbx]Fe块体样品的XRD谱
x y Cluster formula Composition dc Tg Tx ΔTx Tl Trg
mm K K K K
0 0 [Si-B2Fe8.0Nb0.0]Fe Fe75B16.67Si8.33 <1.0 - 839 - 1466 -
0.10 0 [Si-B2Fe7.9Nb0.1]Fe Fe74.17B16.67Si8.33Nb0.83 <1.0 - 854 - 1484 -
0.20 0 [Si-B2Fe7.8Nb0.2]Fe Fe73.33B16.67Si8.33Nb1.67 1.0 - 861 - 1480 -
0.30 0 [Si-B2Fe7.7Nb0.3]Fe Fe72.5B16.67Si8.33Nb2.5 2.0 835 869 34 1460 0.572
0.40 0 [Si-B2Fe7.6Nb0.4]Fe Fe71.67B16.67Si8.33Nb3.33 2.5 843 873 30 1463 0.576
0.50 0 [Si-B2Fe7.5Nb0.5]Fe Fe70.83B16.67Si8.33Nb4.17 2.5 845 881 36 1465 0.577
0.60 0 [Si-B2Fe7.4Nb0.6]Fe Fe70B16.67Si8.33Nb5 2.0 853 885 32 1479 0.577
0.70 0 [Si-B2Fe7.3Nb0.7]Fe Fe69.17B16.67Si8.33Nb5.83 1.5 854 895 41 1486 0.575
0.80 0 [Si-B2Fe7.2Nb0.8]Fe Fe68.33B16.67Si8.33Nb6.67 1.5 856 902 46 1500 0.571
0.90 0 [Si-B2Fe7.1Nb0.9]Fe Fe67.5B16.67Si8.33Nb7.5 1.5 862 911 49 1527 0.565
1.00 0 [Si-B2Fe7.0Nb1.0]Fe Fe66.67B16.67Si8.33Nb8.33 1.5 875 917 42 1537 0.569
1.20 0 [Si-B2Fe6.8Nb1.2]Fe Fe65B16.67Si8.33Nb10 1.0 889 930 41 1557 0.571
0.50 0.05 [Si0.95B0.05-B2Fe7.5Nb0.5]Fe Fe70.83B17.08Si7.92Nb4.17 2.5 844 881 37 1463 0.577
0.60 0.10 [Si0.9B0.1-B2Fe7.4Nb0.6]Fe Fe70B17.5Si7.5Nb5 2.5 854 882 28 1463 0.584
0.70 0.15 [Si0.85B0.15-B2Fe7.3Nb0.7]Fe Fe69.17B17.92Si7.08Nb5.83 2.5 858 896 38 1461 0.587
0.80 0.20 [Si0.8B0.2-B2Fe7.2Nb0.8]Fe Fe68.33B18.33Si6.67Nb6.67 2.5 861 903 42 1459 0.590
0.90 0.25 [Si0.75B0.25-B2Fe7.1Nb0.9]Fe Fe67.5B18.75Si6.25Nb7.5 2.5 869 911 42 1478 0.588
1.00 0.30 [Si0.7B0.3-B2Fe7.0Nb1.0]Fe Fe66.67B19.17Si5.83Nb8.33 2.0 872 917 45 1524 0.572
1.10 0.35 [Si0.65B0.35-B2Fe6.9Nb1.1]Fe Fe65.83B19.58Si5.42Nb9.17 2.0 881 924 43 1545 0.570
1.20 0.40 [Si0.6B0.4-B2Fe6.8Nb1.2]Fe Fe65B20Si5Nb10 1.5 889 928 39 1555 0.572
1.30 0.45 [Si0.55B0.45-B2Fe6.7Nb1.3]Fe Fe64.17B20.42Si4.58Nb10.83 1.0 892 934 42 1564 0.570
表1  [Si-B2Fe8-xNbx]Fe和[(Si1-yBy)-B2Fe8-xNbx]Fe系列合金的团簇式成分、非晶形成能力和热参数
图2  直径为2.5 mm的[Si-B2Fe7.6Nb0.4]Fe和[(Si0.8B0.2)-B2Fe7.2Nb0.8]Fe棒状样品的TEM明场像和SAED像
图3  Fe-B-Si-Nb合金的临界尺寸与Si和Nb含量的变化关系
图4  [Si-B2Fe8-xNbx]Fe和[(Si1-yBy)-B2Fe8-xNbx]Fe系列非晶条带的DSC和DTA曲线
图5  [Si-B2Fe8-xNbx]Fe和[(Si1-yBy)-B2Fe8-xNbx]Fe非晶样品的Tg, Tx和Trg随Nb含量的变化关系曲线
图6  [(Si0.95B0.05)-B2Fe7.5Nb0.5]Fe块体非晶样品的室温工程应力-应变曲线
图7  [Si-B2Fe8-xNbx]Fe (x=0.2~0.6)非晶条带样品的磁化曲线和磁滞回线
图8  [Si-B2Fe8-xNbx]Fe (x=0.2~0.6)非晶样品的饱和磁化强度Bs和Curie温度Tc随Nb含量x的变化关系曲线
[1] Inoue A, Shinohara Y, Gook J S.Mater Trans JIM, 1995; 36: 1427
[2] Suryanarayana C, Inoue A.Int Mater Rev, 2013; 58: 131
[3] Inoue A.Acta Mater, 2000; 48: 279
[4] Davies H A, Lewis B G.Scr Metall, 1975; 9: 1107
[5] Shen B L, Chang C T, Inoue A.Intermetallics, 2007; 15: 9
[6] Wang W H.Prog Mater Sci, 2007; 52: 540
[7] Lu Z P, Liu C T.J Mater Sci, 2004; 39: 3965
[8] Shen B L, Inoue A, Chang C T.Appl Phys Lett, 2004; 85: 4911
[9] Dong C, Wang Q, Qiang J B, Wang Y M, Jiang N, Han G, Li Y H.J Phys, 2007; 40D: R273
[10] Miracle D B.Nat Mater, 2004; 3: 697
[11] Han G, Qiang J B, Li F W, Yuan L, Quan S G, Wang Q, Wang Y M, Dong C, H?ussler P.Acta Mater, 2011; 59: 5917
[12] Luo L J, Chen H, Wang Y M, Qiang J B, Wang Q, Dong C, H?ussler P.Philos Mag, 2014; 94: 2520
[13] Wu J, Wang Q, Qiang J B, Chen F, Dong C, Wang Y M, Shek C H.J Mater Res, 2007; 22: 573
[14] Xia J H, Qiang J B, Wang Y M, Wang Q, Dong C. Appl Phys Lett, 2006; 88: 101907
[15] Wang Y M, Wang Q, Zhao J J, Dong C.Scr Mater, 2010; 63: 178
[16] Yuan L, Pang C, Wang Y M, Wang Q, Dong C.Intermetallics, 2010; 18: 1800
[17] Gaskell P H.In: Beck H, Güntherodt H J eds., Models for the Structure of Amorphous Metals. Belin, Heidelberg, New York, Tokyo: Springer-Verlag, 1983: 5
[18] Inoue A, Shen B L.Mater Trans, 2002; 43: 766
[19] Amiya K, Urata A, Nishiyama N, Inoue A.Mater Trans, 2004; 45: 1214
[20] Shen B L, Inoue A, Chang C T.Appl Phys Lett, 2004; 85: 4911
[21] Shen B L, Inoue A.J Mater Res, 2005; 20: 1
[22] Geng Y X, Han K M, Wang Y M, Qiang J B, Wang Q, Dong C, Zhang G F, Tegus O, H?ussler P.Acta Metall Sin, 2015; 51: 1017
[22] (耿遥祥, 韩凯明, 王英敏, 羌建兵, 王清, 董闯, 张贵锋, 特古斯, H?ussler P. 金属学报, 2015; 51: 1017)
[23] Geng Y X, Wang Y M, Qiang J B, Zhang G F, Dong C, Tegus O, Sun J Z.Intermetallics, 2015; 67: 138
[24] Geng Y X, Wang Y M, Wang Z Y, Wang H B, Qiang J B, Dong C, Tegus O.Mater Des, 2016; 106: 67
[25] Geng Y X, Wang Y M, Qiang J B, Zhang G F, Dong C, H?ussler P.J Non-Cryst Solids, 2016; 432: 453
[26] Takeuchi A, Inoue A.Mater Trans, 2005; 46: 2817
[27] Inoue A, Shen B L, Chang C T.Acta Mater, 2004; 52: 4093
[28] Inoue A, Shen B L, Chang C T.Intermetallics, 2006; 14: 936
[29] Park J M, Park J S, Na J H, Kim D H, Kim D H. Mater Sci Eng#/magtechI#, 2006; A435-436: 425
[30] Chen H S.Rep Prog Phys, 1980; 43: 353
[31] Li F S, Shen B L, Makino A, Inoue A.Appl Phys Lett, 2007; 91: 234101
[32] Ling H B, Li Q, Li H X, Zhang J J, Dong Y Q, Chang C T, Seonghoon Y. J Appl Phys, 2014; 115: 204901
[1] 张啸尘, 孟维迎, 邹德芳, 周鹏, 石怀涛. 预循环应力对高速列车关键结构用铝合金材料疲劳裂纹扩展行为的影响[J]. 金属学报, 2019, 55(10): 1243-1250.
[2] 耿遥祥,林鑫,羌建兵,王英敏,董闯. Finemet型纳米晶软磁合金的双团簇特征与成分优化[J]. 金属学报, 2017, 53(7): 833-841.
[3] 耿遥祥,张志杰,王英敏,羌建兵,董闯,汪海斌,特古斯. 高Fe含量Fe-B-Si-Hf块体非晶合金的结构-性能关联[J]. 金属学报, 2017, 53(3): 369-375.
[4] 刘芳; 孙文儒; 杨树林; 李战; 郭守仁; 杨洪才; 胡壮麒 . Al含量对GH4169镍基合金组织及其稳定性的影响[J]. 金属学报, 2008, 44(7): 791-798 .
[5] 张长利; 王华明; 栾德艳 . 激光熔炼W/W2Ni3Si金属硅化物”原位”复合材料的耐磨性[J]. 金属学报, 2003, 39(7): 767-770 .
[6] 张子青. 液态“渣-金属”化学平衡法求取渣系组元活度的探讨[J]. 金属学报, 1998, 34(3): 299-304.
[7] 石崇哲. Zn对钢的韧化效应[J]. 金属学报, 1995, 31(1): 29-33.