Please wait a minute...
金属学报  2011, Vol. 47 Issue (8): 1003-1008    DOI: 10.3724/SP.J.1037.2011.00074
  论文 本期目录 | 过刊浏览 |
源自Ni--Nb共晶团簇式的Ni-Nb-(Zr, Ta, Ag) 三元块体非晶合金成分设计
袁亮,羌建兵,庞厰,王英敏,王清,董闯
大连理工大学三束材料改性教育部重点实验室, 大连 116024
COMPOSITION DESIGN OF Ni–Nb–(Zr, Ta, Ag) TERNARY BULK METALLIC GLASSES BASED ON CLUSTER FORMULA OF Ni–Nb EUTECTIC
YUAN Liang, QIANG Jianbing, PANG Chang, WANG Yinmin, WANG Qing, DONG Chuang
Key Laboratory of Materials Modification (Dalian University of Technology), Ministry of Education, Dalian 116024
引用本文:

袁亮 羌建兵 庞厰 王英敏 王清 董闯. 源自Ni--Nb共晶团簇式的Ni-Nb-(Zr, Ta, Ag) 三元块体非晶合金成分设计[J]. 金属学报, 2011, 47(8): 1003-1008.
, , , , , . COMPOSITION DESIGN OF Ni–Nb–(Zr, Ta, Ag) TERNARY BULK METALLIC GLASSES BASED ON CLUSTER FORMULA OF Ni–Nb EUTECTIC[J]. Acta Metall Sin, 2011, 47(8): 1003-1008.

全文: PDF(870 KB)  
摘要: 利用团簇+连接原子模型设计Ni-Nb基三元块体非晶成分.首先, 解析出二元共晶点Ni59.5Nb40.5的团簇式[(Ni0.5Nb0.5)-Ni6Nb6]Ni3, 其中,(Ni0.5Nb0.5)-Ni6Nb6为源自Ni6Nb7(Fe7W6型)共晶相的以(Ni0.5Nb0.5)为心的二十面体团簇. 相应的,具有最大非晶形成能力的Ni-Nb二元成分Ni62Nb38可描述成团簇式[Ni-Ni6Nb6]Ni3, 此时,二十面体团簇的中心位置完全由Ni占据.以[Ni-Ni6Nb6]Ni3二元非晶团簇式为基础,通过引入第3组元Zr, Ta 或Ag, 设计出具有更高非晶形成能力的Ni-Nb-(Zr, Ta, Ag)三元合金, 利用水冷铜模吸铸方法获得临界直径为3 mm的块体非晶.热分析和力学测试表明这些三元块体非晶具有较高的热稳定性,其中[Ni-Ni6Nb5Ta]Ni3具有最高的玻璃转变温度Tg(935 K)和晶化温度Tx(952 K); 这些三元块体非晶具有一定的塑性变形能力(延伸率约为0.3%), [Ni-Ni6Nb5Zr]Ni3和[Ni-Ni6Nb5Ta]Ni3块体非晶的压缩断裂强度分别达到3.2和3.4 GPa.
关键词 Ni-Nb基块体非晶成分设计 团簇+连接原子模型    
Abstract:A cluster–plus–glue atom model was employed to design Ni–Nb based ternary bulk metallic glasses. The binary eutectic point Ni59.5Nb40.5 was first interpreted by the model in form of a cluster formula [(Ni0.5Nb0.5)–Ni6Nb6]Ni3, where the cluster is (Ni0.5Nb0.5)–centered icosahedron derived from a eutectic phase Ni6Nb7 (Fe7W6 type). It was then pointed out that the best binary glass former Ni62Nb38 could be interpreted based on the eutectic cluster formula by replacing the cluster center Nb0.5 with Ni0.5, namely [Ni–Ni6Nb6]Ni3=Ni62.5Nb37.5. To further improve the glass–forming ability, Zr, Ta and Ag are selected as alloying additions to partially replace Nb in the [Ni–Ni6Nb6]Ni3 cluster formula, and glassy rods with a critical size of 3 mm are achieved at appropriate ternary compositions by copper–mould suction–casting. DTA measurements indicate these bulk metallic glasses exhibit high thermal stabilities, among which the [Ni–Ni6Nb5Ta]Ni3 alloy has the highest Tg (glass transition temperature)of 935 K and Tx (crystallization temperature) of 952 K. Room–temperature compressive curves of [Ni–Ni6Nb5Zr]Ni3 and [Ni–Ni6Nb5Ta]Ni3 alloys show they have limited plasticity with a elongation of about 0.3%, fracture strength of the [Ni–Ni6Nb5Zr]Ni3 and [Ni–Ni6Nb5Ta]Ni3 BMGs are about 3.2 GPa and 3.4 GPa, respectively.
Key wordsNi–Nb-based bulk metallic glasses    composition design    cluster–plus–glue atom model
收稿日期: 2011-02-14     
ZTFLH: 

TG139.8

 
基金资助:

国家自然科学基金项目50901012和 51041011, 国家重点基础发展计划项目2007CB613902及高等学校科技创新工程重大项目培育资金项目707015资助

作者简介: 袁亮, 男, 1985年生, 博士生
[1] Inoue A. Acta Mater, 2000; 48: 279

[2] Inoue A, Shen B L, Takeuchi A. Mater Trans, 2006; 47: 1275

[3] Kimura H, Inoue A, Yamaura S. Mater Trans, 2003; 62: 1167

[4] Xu D H, Duan G, Johnson W L, Garland C. Acta Mater, 2004; 52: 3493

[5] Ruhl R C, Giessen B C, Cohen M, Grant N J. Acta Metall, 1967; 15: 1693

[6] Xia L, Li W H, Fang S S, Wei B C, Dong Y D. J Appl Phys, 2006; 99: 26103

[7] Choi–Yim H, Xu D H, JohnsonWL. Appl Phys Lett, 2003; 82: 1030

[8] Chen L Y, Hu H T, Zhang G Q, Jiang J Z. J Alloys Comp, 2007; 443: 109

[9] Zhu Z W, Zhang H F, Ding B Z, Hu Z Q. Mater Sci Eng, 2008; 492: 221

[10] Zhang J L, Wang Y M, Shek C H, Wang Q, Dong C. J Alloys Comp, 2010; 491: 513

[11] Eckert J, Mattern N, Zinkevitch M, Seidel M. Mater Trans, 1998; 39: 623

[12] Waniuk T A, Schroers J, Johnson W L. Phys Rev, 2003; 67B: 184203

[13] Miracle D B, Sanders W S. Philos Mag, 2003; 83: 2409

[14] Miracle D B. Nature Mater, 2004; 3: 697

[15] Miracle D B. Acta Mater, 2006; 54: 4317

[16] Dong C, Wang Q, Qiang J B, Wang Y M, Jiang N, Han G, Li Y H, Wu J, Xia J H. J Phys, 2007; 40D: 273

[17] Wang Q, Qiang J B, Wang Y M, Xia J H, Zhang X F, Dong C. Intermetallics, 2004; 12: 1229

[18] Xia J H, Qiang J B, Wang Y M, Wang Q, Dong C. Appl Phys Lett, 2006; 88: 101907

[19] Wang Q, Zhu C L, Dong C, Qiang J B, Zhang W, Inoue A. J Phys: Confer Ser, 2008; 98: 12017

[20] Yuan L, Pang C, Wang Y M, Wang Q, Dong C. Intermetallics, 2010; 18: 1800

[21] Ma D, Tan H, Zhang Y, Li Y. Mater Trans, 2003; 44: 2007

[22] Pearson W B. Crystal Chemistry and Physics of Metals and Alloys. New Jersey: Wiley, 1972: 1

[23] Chen J X,Wang Q,Wang Y M, Qiang J B, Dong C. Philos Mag Lett, 2010; 90: 683

[24] Lu Z P, Liu C T. J Mater Sci, 2004; 39: 3965

[25] Yan M, Zou J, Shen J. Acta Mater, 2006; 54: 3627
[1] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[2] 何兴群, 付华栋, 张洪涛, 方继恒, 谢明, 谢建新. 机器学习辅助高性能银合金电接触材料的快速发现[J]. 金属学报, 2022, 58(6): 816-826.
[3] 汪东红, 孙锋, 疏达, 陈晶阳, 肖程波, 孙宝德. 数据驱动镍基铸造高温合金设计及复杂铸件精确成形[J]. 金属学报, 2022, 58(1): 89-102.
[4] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[5] 吴静,刘永长,李冲,伍宇婷,夏兴川,李会军. 高Fe、Cr含量多相Ni3Al基高温合金组织与性能研究进展[J]. 金属学报, 2020, 56(1): 21-35.
[6] 耿遥祥,林鑫,羌建兵,王英敏,董闯. Finemet型纳米晶软磁合金的双团簇特征与成分优化[J]. 金属学报, 2017, 53(7): 833-841.
[7] 耿遥祥,张志杰,王英敏,羌建兵,董闯,汪海斌,特古斯. 高Fe含量Fe-B-Si-Hf块体非晶合金的结构-性能关联[J]. 金属学报, 2017, 53(3): 369-375.
[8] 耿遥祥,韩凯明,王英敏,羌建兵,王清,董闯,张贵锋,特古斯,HAÜSSLER Peter. 基于团簇+连接原子模型的Fe-B-Si-Ta块体非晶合金的成分设计*[J]. 金属学报, 2015, 51(8): 1017-1024.
[9] 周雪峰,陈光,严世坦, 郑功,李沛,陈锋. 新型无Re镍基单晶高温合金探索研究[J]. 金属学报, 2013, 49(11): 1467-1472.
[10] 王清 查钱锋 刘恩雪 董闯 王学军 谭朝鑫 冀春俊. 基于团簇模型的高强度马氏体沉淀硬化不锈钢成分设计[J]. 金属学报, 2012, 48(10): 1201-1206.
[11] 马仁涛 郝传璞 王清 任明法 王英敏 董闯. 低弹bcc结构Ti-Mo-Nb-Zr固溶体合金的“团簇+连接原子”模型及其成分设计[J]. 金属学报, 2010, 46(9): 1034-1040.
[12] 陈伟荣; 王清; 程旭; 张庆瑜; 董闯 . 基于团簇线的Fe-B-Y基五元块体非晶合金[J]. 金属学报, 2007, 43(8): 797-802 .