Please wait a minute...
金属学报    DOI: 10.3724/SP.J.1037.2013.00539
  论文 本期目录 | 过刊浏览 |
新型无Re镍基单晶高温合金探索研究
周雪峰1,2),陈光1),严世坦1), 郑功1),李沛1),陈锋1)
1) 南京理工大学材料评价与设计教育部工程研究中心, 南京 210094
2) 常熟理工学院化学与材料工程学院, 常熟 215500
EXPLORATION AND RESEARCH OF A NEW Re-FREE Ni-BASED SINGLE CRYSTAL SUPERALLOY
ZHOU Xuefeng 1,2), CHEN Guang 1), YAN Shitan 1), ZHENG Gong 1), LI Pei 1), CHEN Feng 1)
1) Engineering Research Center of Materials Behavior and Design, Ministry of Education,Nanjing University of Science and Technology, Nanjing 210094
2) School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu 215500
全文: PDF(1574 KB)  
摘要: 

综合运用电子空位理论和d-电子理论, 设计了一种新型无Re镍基单晶高温合金7.5Cr-5Co-2Mo-6.1Al-8W-6.5Ta-0.15Hf-0.05C-0.004B-0.015Y(质量分数, %),Ni余量. 采用光学显微镜、扫描电镜、X射线能谱观察了其铸态、固溶处理和时效处理后的组织特征,研究了完全热处理后合金的760℃拉伸力学行为及断口形貌. 结果表明,合金的组织稳定, 合金元素间共价键平均结合强度Bot, γ′相固溶温度Tγ′solvus, 成分性能预测参数P,抗拉强度σb等与第2代含Re镍基单晶高温合金相当.

关键词 镍基单晶高温合金成分设计组织特征拉伸性能    
Abstract

Ni-based single crystal superalloy has not only high temperature creep and fatigue resistance, but also excellent oxidation and corrosion resistance,which becomes a main selection of the advanced aero engine turbine blades. In order to enhance high temperature properties, Re is added into the superalloy, however, high density and high cost of the Re, especially promote the precipitation of harmful phases at high service temperature, which limit the use of Re. Therefore, how to reduce or even abolish the use of Re in the single crystal superalloy is the main trend to develop a new generation turbine engine material. A new Re-free Ni-based single crystal superalloy, 7.5Cr-5Co-2Mo-6.1Al-8W-6.5Ta-0.15Hf-0.05C-0.004B-0.015Y (mass fraction, %), Ni balance, has been designed by using the average electron vacancy number theory and the d-electrons concept. The microstructures of the as-cast, solution and aging treated specimens were observed by optical microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy. The mechanical behavior of the fully heat treated single crystal superalloy and the appearance of fracture at 760℃ were studied. The calculation results indicate that the microstructure of the designed alloy is stable and the main performance criteria, such as Bot (the bond order between alloying elements and Ni atoms),Tγ′solvus (γ′ solvus temperature),P (the parameter which predicts the merit of the composition), etc.,are comparable to those of the second generation of the Ni-based single crystal superalloy.The experimental results indicate that W and Mo enriched in the dendrite cores,while Al and Ta enriched in the interdendritic region. The size and volume fraction of γ′ phase in the dendrite cores is smaller than that in the interdendritic region.After solution heat treatment at 1300℃, 3 h, air cooling,γ/γ′ eutectics are dissolved and composition segregation is significantly improved. After fully heat treatment at 1100℃, 4 h,air cooling and 870℃, 24 h, air cooling, γ′ phase with cube-shaped distributes in theγmatrix channels uniformly, whose ultimate tensile strength at 760℃ is 1009 MPa, comparable to the second generation of Re-containing Ni-based single crystal superalloy considerably.

Key wordsNi-based single crystal superalloy    composition design    microstructure characteristics, tensile property
收稿日期: 2013-08-30     
基金资助:

江苏省科技支撑计划(工业)项目BE201217, 科技创新基金项目CX2011028和CX2011029资助

通讯作者: 陈光     E-mail: gchen@njust.edu.cn
作者简介: 周雪峰, 男, 1979年生, 博士生

引用本文:

周雪峰,陈光,严世坦, 郑功,李沛,陈锋. 新型无Re镍基单晶高温合金探索研究[J]. 金属学报, 10.3724/SP.J.1037.2013.00539.
ZHOU Xuefeng, CHEN Guang, YAN Shitan, ZHENG Gong, LI Pei, CHEN Feng. EXPLORATION AND RESEARCH OF A NEW Re-FREE Ni-BASED SINGLE CRYSTAL SUPERALLOY. Acta Metall Sin, 2013, 49(11): 1467-1472.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2013.00539      或      https://www.ams.org.cn/CN/Y2013/V49/I11/1467

[1] Ryokichi H, Akira Y, Takamasa K, Yoshinori M, Masahiko M. In: Green K A,Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S, eds.,Superalloys 2004, Warrendale, PA: TMS, 2004: 53

[2] Tresa M P, Sammy T.  J Propul Power, 2006; 22: 361
[3] Cetel A D, Duhl D N. In: Reichman S, Duhl D N, Maurer G, Antolovich S,Lund C, eds.,  Superalloys 1988, Warrendale, PA: TMS, 1988: 235
[4] Hu Z Q, Liu L R, Jin T, Sun X F.  Aeroengine, 2005; 31(3): 1
(胡壮麒, 刘丽荣, 金涛, 孙晓峰. 航空发动机, 2005; 31(3): 1)
[5] Reed R C, Tao T, Warnken N.  Acta Mater, 2009; 57: 5898
[6] Rae C M F, Reed R C.  Acta Mater, 2001; 49: 4113
[7] Rae C M F, Karunaratne M S A, Small C J, Broomfield R W, Jones C N, ReedR C. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, McLean M, Olson S,Schirra J J, eds.,  Superalloys 2000, Warrendale, PA: TMS, 2000: 767
[8] Caldwell E, Fela F, Fuchs G.  JOM, 2004; 56(9): 44
[9] Yeh A C, Sato A , Kobayashi T, Harada H.  Mater Sci Eng, 2008; A490: 445
[10] Tian S G, Wang M G, Li T, Qian B J, Xie J.  Mater Sci Eng, 2010; A527: 5444
[11] Hobbs R A, Zhang L, Rae C M F, Tin S.  Metall Mater Trans, 2008; 39A: 1014
[12] Yukawa N, Morinaga M, Murata Y, Ezakin H, Inoue S. In: Reichman S, Duhl D N, Maurer G, Antolovich S, Lund C, eds.,  Superallovs 1988, Warrendale,PA: TMS, 1988: 225
[13] Murata Y, Miyazaki S, Morinaga M, Hashizume R. In: Kissinger R D,Deye D J, Anton D L, Cetel A D, Nathal M V, Pollock T M, Woodford D A, eds., Superalloys 1996, Warrendale, PA: TMS, 1996: 61
[14] Zhang J S, Hu Z Q, Murata Y, Morinaga M, Yukawa N.  Met Trans, 1993; 24A: 2443
[15] Morinaga M, Yukawa N, Adachi H.  J Phys Soc Jpn, 1984; 55: 653
[16] Morinaga M, Yuhwa N, Ezaki H, Adachi H.  Philos Mag, 1985; 51A: 223
[17] Sabo G P, Stickler R.  Phys Status Solidi, 1969; 35B(1): 11
[18] Barrows R G, Newkirk J B.  Metall Trans, 1972; 3A: 2889
[19] Wallace W.  Met Sci, 1975; 9: 547
[20] Caron P. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, McLean M,Olson S, Schirra J J, eds.,  Superalloys 2000, Warrendale, PA: TMS, 2000: 737
[21] Rae C.  Mater Sci Technol, 2009; 25: 479
[22] Duhl D N, Cetel A D.  US Pat, 4719080, 1988
[23] Carroll L J, O'Hara K S.  US Pat, WO2009032578A1, 2009
[24] Wukusick C S, Buchakjian L.  UK Pat, GB 2235697, 1991
[25] Dwaine L K.  US Pat, 4476091, 1984
[26] Hata S, Kimura K, Gao H Y,Matsumura S, Doi M, Moritani T, Barnard J S,Tong J R, Sharp J H, Midgley P A.  Adv Mater, 2008; 20: 1905
[27] Doi M, Miki D, Moritani T, Kozakai T. In: Green K A, Pollock T M, Harada H,Howson T E, Reed R C, Schirra J J, Walston S, eds.,  Superalloys 2004, Warrendale,PA: TMS, 2004: 109
[28] Eridon J M, Harris K, Sikkenga S L.  US Pat, 5443789, 1995
[29] Wukusick C S, Buchakjian L.  US Pat, 6074602, 2000
[1] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[2] 李源才, 江五贵, 周宇. 纳米孔洞对单晶/多晶Ni复合体拉伸性能的影响[J]. 金属学报, 2020, 56(5): 776-784.
[3] 余晨帆, 赵聪聪, 张哲峰, 刘伟. 选区激光熔化316L不锈钢的拉伸性能[J]. 金属学报, 2020, 56(5): 683-692.
[4] 王希,刘仁慈,曹如心,贾清,崔玉友,杨锐. 冷却速率对β凝固γ-TiAl合金硼化物和室温拉伸性能的影响[J]. 金属学报, 2020, 56(2): 203-211.
[5] 吴静,刘永长,李冲,伍宇婷,夏兴川,李会军. 高Fe、Cr含量多相Ni3Al基高温合金组织与性能研究进展[J]. 金属学报, 2020, 56(1): 21-35.
[6] 胡斌,李树索,裴延玲,宫声凯,徐惠彬. <111>取向小角偏离对一种镍基单晶高温合金蠕变性能的影响[J]. 金属学报, 2019, 55(9): 1204-1210.
[7] 马晋遥,王晋,赵云松,张剑,张跃飞,李吉学,张泽. 一种第二代镍基单晶高温合金1150 ℃原位拉伸断裂机制研究[J]. 金属学报, 2019, 55(8): 987-996.
[8] 刘征,刘建荣,赵子博,王磊,王清江,杨锐. 电子束快速成形制备TC4合金的组织和拉伸性能分析[J]. 金属学报, 2019, 55(6): 692-700.
[9] 安同邦,魏金山,单际国,田志凌. 保护气成分对1000 MPa级高强熔敷金属组织特征的影响[J]. 金属学报, 2019, 55(5): 575-584.
[10] 任德春, 苏虎虎, 张慧博, 王健, 金伟, 杨锐. 冷旋锻变形对TB9钛合金显微组织和拉伸性能的影响[J]. 金属学报, 2019, 55(4): 480-488.
[11] 张宇, 王清, 董红刚, 董闯, 张洪宇, 孙晓峰. 基于团簇模型设计的镍基单晶高温合金(Ni, Co)-Al-(Ta, Ti)-(Cr, Mo, W)及其在900 ℃下1000 h的长期时效行为[J]. 金属学报, 2018, 54(4): 591-602.
[12] 陈胜虎, 戎利建. Ni-Fe-Cr合金固溶处理后的组织变化及其对性能的影响[J]. 金属学报, 2018, 54(3): 385-392.
[13] 郭静, 李金国, 刘纪德, 黄举, 孟祥斌, 孙晓峰. 低偏析异质籽晶制备单晶高温合金的籽晶熔合区形成机制研究[J]. 金属学报, 2018, 54(3): 419-427.
[14] 李冬冬, 钱立和, 刘帅, 孟江英, 张福成. Mn含量对Fe-Mn-C孪生诱发塑性钢拉伸变形行为的影响[J]. 金属学报, 2018, 54(12): 1777-1784.
[15] 陈瑞, 许庆彦, 郭会廷, 夏志远, 吴勤芳, 柳百成. Al-7Si-Mg铝合金拉伸过程应变硬化行为及力学性能模拟研究[J]. 金属学报, 2017, 53(9): 1110-1124.