Please wait a minute...
金属学报  2010, Vol. 46 Issue (9): 1034-1040    DOI: 10.3724/SP.J.1037.2010.00039
  论文 本期目录 | 过刊浏览 |
低弹bcc结构Ti-Mo-Nb-Zr固溶体合金的“团簇+连接原子”模型及其成分设计
马仁涛1), 郝传璞1), 王清1), 任明法2), 王英敏1), 董闯1)
1)  大连理工大学三束材料改性教育部重点实验室, 大连 116024
2)  大连理工大学工业装备结构分析国家重点实验室, 大连 116024
CLUSTER-PLUS-GLUE-ATOM MODEL AND COMPOSITION DESIGN OF BCC Ti-Mo-Nb-Zr SOLID SOLUTION ALLOYS WITH LOW YOUNG'S MODULUS
MA Rentao1), HAO Chuanpu1), WANG Qing1), REN Mingfa2), WANG Yingmin1), DONG Chuang1)
1)  Key Laboratory of Materials Modification (Ministry of Education), Dalian University of Technology, Dalian 116024
2)  State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024
引用本文:

马仁涛 郝传璞 王清 任明法 王英敏 董闯. 低弹bcc结构Ti-Mo-Nb-Zr固溶体合金的“团簇+连接原子”模型及其成分设计[J]. 金属学报, 2010, 46(9): 1034-1040.
, , , , , . CLUSTER-PLUS-GLUE-ATOM MODEL AND COMPOSITION DESIGN OF BCC Ti-Mo-Nb-Zr SOLID SOLUTION ALLOYS WITH LOW YOUNG'S MODULUS[J]. Acta Metall Sin, 2010, 46(9): 1034-1040.

全文: PDF(733 KB)  
摘要: 

利用“团簇+连接原子”结构模型研究了典型低弹bcc β-Ti固溶体合金的成分特征. 对现有低弹β-Ti固溶体合金的成分分析表明它们均满足团簇式[CN14团簇](连接原子)x. 根据该式, 设计了Ti-Mo-Nb-Zr系列合金 [MoTi14]Ti (质量分数表达时为Ti-11.8Mo), [MoTi14]Nb (Ti-11.2Mo-10.8Nb), [MoTi14]Nb2 (Ti-10.1Mo-19.5Nb)和[Mo(Ti13Zr)]Nb2 (Ti-9.2Zr-9.6Mo-18.7Nb), 并采用Cu模吸铸快冷技术制备直径为3和6 mm的合金棒. 结果表明, 吸铸制备的合金均为bcc结构; 当连接原子由Ti变成更低弹的Nb时, 合金弹性模量降低; 低弹Zr替代Ti进一步降低了合金的弹性模量, [Mo(Ti13Zr)]Nb2 合金的弹性模量E=72 GPa. 铸态样品经过固溶和水淬处理后弹性模量降低.

关键词 Ti-Mo-Nb-Zr合金β-Ti固溶体“团簇+连接原子”结构模型成分设计低弹性模量    
Abstract

The composition characteristics of typical bcc β-Ti solid solution alloys with low Young's modulus were analyzed by using the cluster-plus-glue-atom model, in which an alloy structure is dissociated into a cluster part and a glue atom part, i.e. isolated clusters are linked with glue atoms. The cluster here is the nearest neighbor coordination polyhedron with a coordination number of 14 (CN14). It is confirmed that β-Ti solid solution alloys with low Young's moduli satisfy a universal cluster formula [CN14 cluster](glue atom)x given by this model. Alloys, described by cluster formulas [MoTi14]Ti, [MoTi14]Nb, [MoTi14]Nb2 and [Mo(Ti13Zr)]Nb2, Ti-11.8Mo (mass fraction, %), Ti-11.2Mo-10.8Nb, Ti-10.1Mo-19.5Nb and Ti-9.2Zr-9.6Mo-18.7Nb were designed and the alloy rods with diameters of 3 and 6 mm were prepared by copper-mould suction-cast method, respectively. These suction-cast alloys possess monolithic bcc β-Ti structure. The introduction of low-modulus Nb as glue atoms weakens the cluster linking and decreases the Young's modulus. Further substitutions with low-modulus Zr reduces the Young's modulus to 72 GPa in the [Mo(Ti13Zr)]Nb2 alloy. Solution treatment plus subsequent water quenching decreases slightly the Young's moduli of the suction-cast alloys.

Key wordsTi-Mo-Nb-Zr alloy    β-Ti solid solution    cluster-plus-glue-atom model    composition design    low Young's modulus
收稿日期: 2010-01-21     
基金资助:

国家自然科学基金项目50901012和50631010及国家重点基础研究发展计划项目2007CB613902资助

作者简介: 马仁涛, 男, 1984年生, 硕士
[1] Matthew D. Adv Mater Processes, 1998; 154: 63 [2] Niinomi M. Sci Tec Adv Mater Processes, 2003; 4: 445 [3] Leyens C, Peters M, translated by Chen Z H. Titanium and Titanium Alloys. Beijing: Chemical Techonology Press, 2005: 369 (莱茵斯C,皮特尔斯M著,陈振华译.钛与钛合金.北京:化学工业出版社,2005: 369) [4] Yao Q, Xing H, Meng L J,Sun J. Acta Metall Sin, 2008; 44: 19 (姚强, 邢辉, 孟丽君, 孙坚. 金属学报, 2008; 44: 19) [5] Wang K. Mater Sci Eng A, 1996; 213: 134 [6] Schuh A, Bigoney J, Ho¨nle W, Zeiler G, Holzwarth U, Forst R. Mat wissu Werkstofftech, 2007; 38: 1003 [7] Xu L J ,Chen Y Y, Liu Z G, Kong F T. J Alloys Compd, 2008; 453: 320 [8] Huang L J. PhD Thesis, Beijing Institute of Aeronautical Material, 2006 (黄利军. 北京航空材料研究院博士论文, 2006) [9] Niinomi M. Mater Sci Eng A, 1998; 243: 231 [10] Zha S Y, Cui Z D, Liu Y J,Zhu S L, Yang X J.Rare Met Mater Eng, 2007; 36: 20 (查树银, 崔振铎, 刘彦军, 朱胜利, 杨贤金. 稀有金属材料与工程, 2007; 36: 20 [11] Martins D Q, Osório W R, Souza M E P, Caram R, Garcia A. Electrochim Acta , 2008; 53: 2809 [12] Hao Y L, Li S J, Sun S Y, Zheng C Y , Yang R. Acta Biomater, 2007; 3: 277 [13] Breme J, Wadewitz V. Int J Oral Maxillofac Implants. 1989; 4: 113 [14] Abdel-Hady M, Hinoshita K, Morinaga M. Scripta Mater, 2006; 55: 477 [15] Bania P J. In: Eylon D, Boyer R R, Koss D A(eds). Beta titanium alloys in the 1990’s, Warrendale, PA: TMS,1993: 6 [16] Dong C, Wang Q, Qiang J B, Wang Y M, Jiang N, Han G, Li Y H, Wu J, Xia J H. J Phys,2007; 40: 273 [17] Wang Q, Dong C, Qiang J B, Wang Y M. Mater Sci Eng A, 2007; 18: 449 [18] Wang H B, Wang Q, Dong C, Yuan L, Xu F, Sun L X. J Phys: Condens Matert,2008;20: 114110 [19] Zhang J, Wang Q, Wang Y M, Dong C. Acta Metall Sin, 2009; 45: 1390 (张杰, 王清, 王英敏, 董闯. 金属学报, 2009; 45: 1390) [20] Miracle D B, Sanders W S. Philos Mag, 2003; 83: 2409 [21] Singh J, Singh P, Pattan S K, Prakash S. Phys Rev B Condens Matter, 1994; 49: 932 [22] Zhou Y B. Titanium alloy casting. Beijing: Aviation Industry Press, 2000: 26 (周彦邦. 钛合金铸造概论. 北京: 航空工业出版社, 2000: 26) [23] Wang W H. J Non-Cryst Solids, 2005; 351: 1481
[1] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[2] 何兴群, 付华栋, 张洪涛, 方继恒, 谢明, 谢建新. 机器学习辅助高性能银合金电接触材料的快速发现[J]. 金属学报, 2022, 58(6): 816-826.
[3] 汪东红, 孙锋, 疏达, 陈晶阳, 肖程波, 孙宝德. 数据驱动镍基铸造高温合金设计及复杂铸件精确成形[J]. 金属学报, 2022, 58(1): 89-102.
[4] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[5] 吴静,刘永长,李冲,伍宇婷,夏兴川,李会军. 高Fe、Cr含量多相Ni3Al基高温合金组织与性能研究进展[J]. 金属学报, 2020, 56(1): 21-35.
[6] 耿遥祥,林鑫,羌建兵,王英敏,董闯. Finemet型纳米晶软磁合金的双团簇特征与成分优化[J]. 金属学报, 2017, 53(7): 833-841.
[7] 耿遥祥,张志杰,王英敏,羌建兵,董闯,汪海斌,特古斯. 高Fe含量Fe-B-Si-Hf块体非晶合金的结构-性能关联[J]. 金属学报, 2017, 53(3): 369-375.
[8] 李群,王清,李晓娜,高晓霞,董闯. 三元β-Ti-Mo-Zr(Sn)合金析出相对弹性模量和力学性能的影响[J]. 金属学报, 2013, 49(9): 1143-1147.
[9] 周雪峰,陈光,严世坦, 郑功,李沛,陈锋. 新型无Re镍基单晶高温合金探索研究[J]. 金属学报, 2013, 49(11): 1467-1472.
[10] 王清 查钱锋 刘恩雪 董闯 王学军 谭朝鑫 冀春俊. 基于团簇模型的高强度马氏体沉淀硬化不锈钢成分设计[J]. 金属学报, 2012, 48(10): 1201-1206.
[11] 袁亮 羌建兵 庞厰 王英敏 王清 董闯. 源自Ni--Nb共晶团簇式的Ni-Nb-(Zr, Ta, Ag) 三元块体非晶合金成分设计[J]. 金属学报, 2011, 47(8): 1003-1008.
[12] 陈伟荣; 王清; 程旭; 张庆瑜; 董闯 . 基于团簇线的Fe-B-Y基五元块体非晶合金[J]. 金属学报, 2007, 43(8): 797-802 .