|
|
数据驱动镍基铸造高温合金设计及复杂铸件精确成形 |
汪东红1, 孙锋1,2( ), 疏达1,2( ), 陈晶阳3, 肖程波3, 孙宝德1,2 |
1. 上海交通大学 材料科学与工程学院 上海市先进高温材料及其精密成形重点实验室 金属基复合材料国家重点实验室 上海 200240 2. 上海交通大学 材料基因组联合研究中心 上海 200240 3. 中国航发北京航空材料研究院 先进高温结构材料重点实验室 北京 100095 |
|
Data-Driven Design of Cast Nickel-Based Superalloy and Precision Forming of Complex Castings |
WANG Donghong1, SUN Feng1,2( ), SHU Da1,2( ), CHEN Jingyang3, XIAO Chengbo3, SUN Baode1,2 |
1. Shanghai Key Lab of Advanced High-Temperature Materials and Precision Forming and State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China 2. Materials Genome Initiative Center, Shanghai Jiao Tong University, Shanghai 200240, China 3. Science and Technology on Advanced High Temperature Structural Materials Laboratory, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China |
引用本文:
汪东红, 孙锋, 疏达, 陈晶阳, 肖程波, 孙宝德. 数据驱动镍基铸造高温合金设计及复杂铸件精确成形[J]. 金属学报, 2022, 58(1): 89-102.
Donghong WANG,
Feng SUN,
Da SHU,
Jingyang CHEN,
Chengbo XIAO,
Baode SUN.
Data-Driven Design of Cast Nickel-Based Superalloy and Precision Forming of Complex Castings[J]. Acta Metall Sin, 2022, 58(1): 89-102.
1 |
Su Y J , Fu H D , Bai Y , et al . Progress in materials genome engineering in China [J]. Acta Metall. Sin., 2020, 56: 1313
|
1 |
宿彦京, 付华栋, 白 洋 等 . 中国材料基因工程研究进展 [J]. 金属学报, 2020, 56: 1313
|
2 |
Wang H , Xiang X D , Zhang L T . On the Data-driven materials innovation infrastructure [J]. Engineering, 2020, 6: 609
|
3 |
Qin Z J , Wang Z , Wang Y Q , et al . Phase prediction of Ni-base superalloys via high-throughput experiments and machine learning [J]. Mater. Res. Lett., 2021, 9: 32
|
4 |
Kirchdoerfer T , Ortiz M . Data-driven computational mechanics [J]. Comput. Meth. Appl. Mech. Eng., 2016, 304: 81
|
5 |
Sabau A S , Porter W D . Alloy shrinkage factors for the investment casting of 17-4PH stainless steel parts [J]. Metall. Mater. Trans., 2008, 39B: 317
|
6 |
Gebelin J C , Jolly M R . Modelling of the investment casting process [J]. J. Mater. Process. Technol., 2003, 135: 291
|
7 |
Gayda J . The effect of heat treatment on residual stress and machining distortions in advanced nickel base disk alloys [R]. NASA/TM-2001-210717. Springfield, VA: NASA, 2001: 1
|
8 |
Allison J , Backman D , Christodoulou L . Integrated computational materials engineering: A new paradigm for the global materials profession [J]. JOM, 2006, 58(11): 25
|
9 |
Chen J Y , Li Q , Xiao C B , et al . The second generation hot corrosion resistant Ni-based single crystal superalloy DD489 and its typical properties [J]. Heat Treat. Met., 2019, 44(6): 65
|
9 |
陈晶阳, 李 青, 肖程波 等 . 第二代耐热腐蚀镍基单晶高温合金DD489及其典型性能 [J]. 金属热处理, 2019, 44(6): 65
|
10 |
Liu X J , Chen Y C , Lu Y , et al . Present research situation and prospect of multi-scale design in novel Co-based superalloys: A review [J]. Acta Metall. Sin., 2020, 56: 1
|
10 |
刘兴军, 陈悦超, 卢 勇 等 . 新型钴基高温合金多尺度设计的研究现状与展望 [J]. 金属学报, 2020, 56: 1
|
11 |
Hui X , Fang H Z , Chen G L , et al . Atomic structure of Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass alloy [J]. Acta Mater., 2009, 57: 376
|
12 |
Wang W Y , Li J S , Liu W M , et al . Integrated computational materials engineering for advanced materials: A brief review [J]. Comput. Mater. Sci., 2019, 158: 42
|
13 |
Wang W Y , Li P X , Lin D Y , et al . Did code: A bridge connecting the materials genome engineering database with inheritable integrated intelligent manufacturing [J]. Engineering, 2020, 6: 612
|
14 |
Wang Y , Sun F , Dong X P , et al . Thermodynamic analysis in the design of several typical nickel-based single-crystal superalloys [J]. Acta Metall. Sin., 2010, 46: 334
|
14 |
王 衣, 孙 锋, 董显平 等 . 新型Ni-Co基高温合金中平衡析出相的热力学研究 [J]. 金属学报, 2010, 46: 334
|
15 |
Wang J , Sun F , Dong X P , et al . Thermodynamic analysis in the design of several typical nickel-based single-crystal superalloys [J]. Shanghai Nonferrous Met., 2011, 32(2): 49
|
15 |
王 静, 孙 锋, 董显平 等 . 几种典型镍基单晶高温合金成分设计的热力学分析 [J]. 上海有色金属, 2011, 32(2): 49
|
16 |
Zacherl C L , Shang S L , Kim D E , et al . Effects of alloying elements on elastic, stacking fault, and diffusion properties of Fcc Ni from first-principles: Implications for tailoring the creep rate of Ni-Base superalloys [A]. Superalloys 2012 [C]. Warrendale: TMS, 2012: 455
|
17 |
Menou E , Ramstein G , Bertrand E , et al . Multi-objective constrained design of nickel-base superalloys using data mining- and thermodynamics-driven genetic algorithms [J]. Modell. Simul. Mater. Sci. Eng., 2016, 24: 055001
|
18 |
Wang D H , He B , Liu S M , et al . Dimensional shrinkage prediction based on displacement field in investment casting [J]. Int. J. Adv. Manuf. Technol., 2016, 85: 201
|
19 |
Tavakoli R , Davami P . Optimal feeder design in sand casting process by growth method [J]. Int. J. Cast Met. Res., 2007, 20: 288
|
20 |
Liu C H , Jin S , Lai X M , et al . Influence of complex structure on the shrinkage of part in investment casting process [J]. Int. J. Adv. Manuf. Technol., 2015, 77: 1191
|
21 |
Gebelin J C , Jolly M R , Cendrowicz A M , et al . Simulation of die filling for the wax injection process: Part I. Models for material behavior [J]. Metall. Mater. Trans., 2004, 35B: 755
|
22 |
Wang D H , Dong A P , Zhu G L , et al . The propagation and accumulation of dimensional shrinkage for ring-to-ring structure in investment casting [J]. Int. J. Adv. Manuf. Technol, 2018, 96: 623
|
23 |
Kumar S , Karunakar D B . Development of wax blend pattern and optimization of injection process parameters by grey-fuzzy logic in investment casting process [J]. Int. J. Metalcast., 2021: https://doi.org/10.1007/s40962-021-00655-y
|
24 |
Yu J P , Wang D H , Li D Y , et al . Engineering computing and data-driven for gating system design in investment casting [J]. Int. J. Adv. Manuf. Technol., 2020, 111: 829
|
25 |
Chabbi A , Yallese M A , Nouioua M , et al . Modeling and optimization of turning process parameters during the cutting of polymer (POM C) based on RSM, ANN, and DF methods [J]. Int. J. Adv. Manuf. Technol., 2017, 91: 2267
|
26 |
Hardin R A , Choi K K , Gaul N J , et al . Reliability based casting process design optimisation [J]. Int. J. Cast Met. Res., 2015, 28: 181
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|