Please wait a minute...
金属学报  2022, Vol. 58 Issue (1): 89-102    DOI: 10.11900/0412.1961.2021.00355
  研究论文 本期目录 | 过刊浏览 |
数据驱动镍基铸造高温合金设计及复杂铸件精确成形
汪东红1, 孙锋1,2(), 疏达1,2(), 陈晶阳3, 肖程波3, 孙宝德1,2
1. 上海交通大学 材料科学与工程学院 上海市先进高温材料及其精密成形重点实验室 金属基复合材料国家重点实验室 上海 200240
2. 上海交通大学 材料基因组联合研究中心 上海 200240
3. 中国航发北京航空材料研究院 先进高温结构材料重点实验室 北京 100095
Data-Driven Design of Cast Nickel-Based Superalloy and Precision Forming of Complex Castings
WANG Donghong1, SUN Feng1,2(), SHU Da1,2(), CHEN Jingyang3, XIAO Chengbo3, SUN Baode1,2
1. Shanghai Key Lab of Advanced High-Temperature Materials and Precision Forming and State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2. Materials Genome Initiative Center, Shanghai Jiao Tong University, Shanghai 200240, China
3. Science and Technology on Advanced High Temperature Structural Materials Laboratory, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
引用本文:

汪东红, 孙锋, 疏达, 陈晶阳, 肖程波, 孙宝德. 数据驱动镍基铸造高温合金设计及复杂铸件精确成形[J]. 金属学报, 2022, 58(1): 89-102.
Donghong WANG, Feng SUN, Da SHU, Jingyang CHEN, Chengbo XIAO, Baode SUN. Data-Driven Design of Cast Nickel-Based Superalloy and Precision Forming of Complex Castings[J]. Acta Metall Sin, 2022, 58(1): 89-102.

全文: PDF(4567 KB)   HTML
摘要: 

材料基因组工程与材料智能制备加工技术的发展为航空发动机高温合金关键热端部件的研发与制造提供了新的思路。针对航空发动机涡轮机匣类结构件高温合金材料与铸造成型的需求,开发了高通量并发式的热动力学模拟软件系统,结合镍基铸造高温合金的筛选判据,从520万余种成分组合中筛选并研制了一种新型镍基铸造高温合金,815℃、400 MPa下高温持久性能优于国外Inconel 939高温合金。针对高温合金复杂铸件的精密成型,开展了数据驱动铸件变形全流程集成计算,揭示蜡模注射工艺参数与尺寸映射关系以及凝固变形过程中工艺参数与尺寸精度关联关系,提出了一种基于数据驱动的工艺参数优化方法。建立了基于“模型+算法”的数据驱动的铸造冒口设计方法,结合试验设计和多目标遗传算法,优化了铸造工艺参数,试验验证后铸件工艺出品率提高13.39%。基于数据驱动的成分设计与基于数据模型的工艺设计结合,将加速航空材料与构件的研发与应用。

关键词 高通量成分设计高温合金数据驱动智能铸造    
Abstract

The development of material genomics engineering and intelligent material-processing technology provides new ideas for researching, developing, and manufacturing key thermal superalloy components of aeroengines. Based on the demand for superalloy materials and casting processing, a high-throughput dynamic simulation software system was developed. Combined with the screening criteria of nickel-based casting superalloy, a new nickel-based casting superalloy was selected and developed from more than 5.2 million-component combinations. High-temperature durability at 815oC and 400 MPa is better than foreign Inconel 939 superalloy. For the precision molding of complex superalloy casting, the data-driven process of the casting deformation is integrated, which reveals the correlation between the process parameters and size precision during solidification deformation. Thus, a data-driven process parameter optimization method is proposed herein. A data-driven casting outlet design method based on the model and algorithm, combined with the test design and multi-target genetic algorithm, which optimized the casting process parameters, was established, and the production rate of the casting process increased by 13.39% after the test verification. The combination of data-driven component design and data model-based process design will accelerate the development and application of aviation materials and components.

Key wordshigh throughput composition design    superalloy    data driven    intelligent casting
收稿日期: 2021-08-23     
ZTFLH:  TG146.3  
基金资助:国家重大专项项目(J2019-VI-0004-0117);国家自然科学基金项目(51821001);国家重点研发计划项目;先进高温结构材料重点实验室开放基金(6142903200105)
作者简介: 汪东红,男,1984年生,博士
图1  新型镍基铸造高温合金热动力学模拟软件系统框架
图2  典型性质图和特征参量
Element Min. Max. Step
Cr 10 25 1
Al 0 6 1
Ti 0 6 1
Co 15 30 1
Mo 0 11 1
W 0 15 1
Nb 0 6 1
Ni 40 70 -
Al + Ti 0 10 1
Mo + W 0 15 1
表1  高通量合金成分计算范围 (mass fraction / %)
图3  基于集成计算材料工程的(ICME)铸造工艺设计
图4  精密铸造中基于数据驱动框架的变形预测模型
Parameter Packing pressure / MPa Packing time / s Injection speed / (cm3·s-1) Injection temperature / oC
Upper bound 0.5 10 30 62
Lower bound 5 45 300 70
表2  用于蜡模尺寸误差仿真的设计变量及其区间
Parameter AlloyTemp / oC ShellTemp / oC PA
Upper bound 1600.00 1100.00 0.02
Lower bound 1450.00 900.00 0
表3  用于凝固变形仿真的设计变量及其范围
图5  基于数据驱动的缩松缺陷与铸造工艺设计框架
Parameter Diameter Length AlloyTemp ShellTemp HTC
mm mm oC oC W·m-2·K-1
Upper bound 40.00 50.00 1600.00 1100.00 900
Lower bound 20.00 20.00 1450.00 900.00 750
表4  用于预测缩松缺陷的设计变量及其区间
图6  母合金铸棒、力学性能试棒以及环套环典型铸件形状与尺寸
Alloy Ni Co Cr Al Ti Nb W Mo
1 44 30 15 4 1 2 4 0
2 54 20 15 3 3 0 5 0
表5  筛选出的合金基础成分 (mass fraction / %)
图7  筛选合金与几种典型铸造合金蠕变性能对比(JMatPro模拟结果)
图8  Alloy 1和Alloy 2的SEM像
图9  Alloy 1和Alloy 2的枝晶间共晶形貌,及γ/γ'共晶、MC碳化物的EDS分析
图10  SJTU-1合金典型性能曲线
图11  蜡模注射成型优化结果
图12  蜡模注射成型工艺参数之间的关系矩阵
图13  蜡模注射成型工艺参数之间的二维响应面模型
图14  铸造工艺参数对铸件尺寸误差的贡献度
图15  铸造工艺参数对平均直径和椭圆度的2D关系图谱
图16  输入与平均直径和椭圆度之间的3D关系
图17  工艺参数和结构参数对铸件工艺出品率和安全距离的影响
图18  实际被测样品
1 Su Y J , Fu H D , Bai Y , et al . Progress in materials genome engineering in China [J]. Acta Metall. Sin., 2020, 56: 1313
1 宿彦京, 付华栋, 白 洋 等 . 中国材料基因工程研究进展 [J]. 金属学报, 2020, 56: 1313
2 Wang H , Xiang X D , Zhang L T . On the Data-driven materials innovation infrastructure [J]. Engineering, 2020, 6: 609
3 Qin Z J , Wang Z , Wang Y Q , et al . Phase prediction of Ni-base superalloys via high-throughput experiments and machine learning [J]. Mater. Res. Lett., 2021, 9: 32
4 Kirchdoerfer T , Ortiz M . Data-driven computational mechanics [J]. Comput. Meth. Appl. Mech. Eng., 2016, 304: 81
5 Sabau A S , Porter W D . Alloy shrinkage factors for the investment casting of 17-4PH stainless steel parts [J]. Metall. Mater. Trans., 2008, 39B: 317
6 Gebelin J C , Jolly M R . Modelling of the investment casting process [J]. J. Mater. Process. Technol., 2003, 135: 291
7 Gayda J . The effect of heat treatment on residual stress and machining distortions in advanced nickel base disk alloys [R]. NASA/TM-2001-210717. Springfield, VA: NASA, 2001: 1
8 Allison J , Backman D , Christodoulou L . Integrated computational materials engineering: A new paradigm for the global materials profession [J]. JOM, 2006, 58(11): 25
9 Chen J Y , Li Q , Xiao C B , et al . The second generation hot corrosion resistant Ni-based single crystal superalloy DD489 and its typical properties [J]. Heat Treat. Met., 2019, 44(6): 65
9 陈晶阳, 李 青, 肖程波 等 . 第二代耐热腐蚀镍基单晶高温合金DD489及其典型性能 [J]. 金属热处理, 2019, 44(6): 65
10 Liu X J , Chen Y C , Lu Y , et al . Present research situation and prospect of multi-scale design in novel Co-based superalloys: A review [J]. Acta Metall. Sin., 2020, 56: 1
10 刘兴军, 陈悦超, 卢 勇 等 . 新型钴基高温合金多尺度设计的研究现状与展望 [J]. 金属学报, 2020, 56: 1
11 Hui X , Fang H Z , Chen G L , et al . Atomic structure of Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass alloy [J]. Acta Mater., 2009, 57: 376
12 Wang W Y , Li J S , Liu W M , et al . Integrated computational materials engineering for advanced materials: A brief review [J]. Comput. Mater. Sci., 2019, 158: 42
13 Wang W Y , Li P X , Lin D Y , et al . Did code: A bridge connecting the materials genome engineering database with inheritable integrated intelligent manufacturing [J]. Engineering, 2020, 6: 612
14 Wang Y , Sun F , Dong X P , et al . Thermodynamic analysis in the design of several typical nickel-based single-crystal superalloys [J]. Acta Metall. Sin., 2010, 46: 334
14 王 衣, 孙 锋, 董显平 等 . 新型Ni-Co基高温合金中平衡析出相的热力学研究 [J]. 金属学报, 2010, 46: 334
15 Wang J , Sun F , Dong X P , et al . Thermodynamic analysis in the design of several typical nickel-based single-crystal superalloys [J]. Shanghai Nonferrous Met., 2011, 32(2): 49
15 王 静, 孙 锋, 董显平 等 . 几种典型镍基单晶高温合金成分设计的热力学分析 [J]. 上海有色金属, 2011, 32(2): 49
16 Zacherl C L , Shang S L , Kim D E , et al . Effects of alloying elements on elastic, stacking fault, and diffusion properties of Fcc Ni from first-principles: Implications for tailoring the creep rate of Ni-Base superalloys [A]. Superalloys 2012 [C]. Warrendale: TMS, 2012: 455
17 Menou E , Ramstein G , Bertrand E , et al . Multi-objective constrained design of nickel-base superalloys using data mining- and thermodynamics-driven genetic algorithms [J]. Modell. Simul. Mater. Sci. Eng., 2016, 24: 055001
18 Wang D H , He B , Liu S M , et al . Dimensional shrinkage prediction based on displacement field in investment casting [J]. Int. J. Adv. Manuf. Technol., 2016, 85: 201
19 Tavakoli R , Davami P . Optimal feeder design in sand casting process by growth method [J]. Int. J. Cast Met. Res., 2007, 20: 288
20 Liu C H , Jin S , Lai X M , et al . Influence of complex structure on the shrinkage of part in investment casting process [J]. Int. J. Adv. Manuf. Technol., 2015, 77: 1191
21 Gebelin J C , Jolly M R , Cendrowicz A M , et al . Simulation of die filling for the wax injection process: Part I. Models for material behavior [J]. Metall. Mater. Trans., 2004, 35B: 755
22 Wang D H , Dong A P , Zhu G L , et al . The propagation and accumulation of dimensional shrinkage for ring-to-ring structure in investment casting [J]. Int. J. Adv. Manuf. Technol, 2018, 96: 623
23 Kumar S , Karunakar D B . Development of wax blend pattern and optimization of injection process parameters by grey-fuzzy logic in investment casting process [J]. Int. J. Metalcast., 2021: https://doi.org/10.1007/s40962-021-00655-y
24 Yu J P , Wang D H , Li D Y , et al . Engineering computing and data-driven for gating system design in investment casting [J]. Int. J. Adv. Manuf. Technol., 2020, 111: 829
25 Chabbi A , Yallese M A , Nouioua M , et al . Modeling and optimization of turning process parameters during the cutting of polymer (POM C) based on RSM, ANN, and DF methods [J]. Int. J. Adv. Manuf. Technol., 2017, 91: 2267
26 Hardin R A , Choi K K , Gaul N J , et al . Reliability based casting process design optimisation [J]. Int. J. Cast Met. Res., 2015, 28: 181
[1] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[3] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[4] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[6] 冯强, 路松, 李文道, 张晓瑞, 李龙飞, 邹敏, 庄晓黎. γ' 相强化钴基高温合金成分设计与蠕变机理研究进展[J]. 金属学报, 2023, 59(9): 1125-1143.
[7] 李嘉荣, 董建民, 韩梅, 刘世忠. 吹砂对DD6单晶高温合金表面完整性和高周疲劳强度的影响[J]. 金属学报, 2023, 59(9): 1201-1208.
[8] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[9] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[10] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[11] 陈佳, 郭敏, 杨敏, 刘林, 张军. 新型钴基高温合金中W元素对蠕变组织和性能的影响[J]. 金属学报, 2023, 59(9): 1209-1220.
[12] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[13] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[14] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[15] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.