|
|
静磁场对新型Co-Al-W基高温合金定向凝固组织的影响 |
余建波1( ), 侯渊1, 张超2, 杨志彬2, 王江1, 任忠鸣1 |
1 上海大学省部共建高品质特殊钢冶金与制备国家重点实验室 上海市钢铁冶金新技术开发应用重点实验室 上海 200072 2 江苏科技大学张家港校区冶金与材料工程学院 张家港 215600 |
|
Effect of High Magnetic Field on the Microstructure in Directionally Solidified Co-Al-W Alloy |
Jianbo YU1( ), Yuan HOU1, Chao ZHANG2, Zhibin YANG2, Jiang WANG1, Zhongming REN1 |
1 State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy, Shanghai University, Shanghai 200072, China 2 School of Metallurgical and Materials Engineering, Zhangjiagang Campus of Jiangsu University of Science and Technology, Zhangjiagang 215600, China |
引用本文:
余建波, 侯渊, 张超, 杨志彬, 王江, 任忠鸣. 静磁场对新型Co-Al-W基高温合金定向凝固组织的影响[J]. 金属学报, 2017, 53(12): 1620-1626.
Jianbo YU,
Yuan HOU,
Chao ZHANG,
Zhibin YANG,
Jiang WANG,
Zhongming REN.
Effect of High Magnetic Field on the Microstructure in Directionally Solidified Co-Al-W Alloy[J]. Acta Metall Sin, 2017, 53(12): 1620-1626.
[1] | Hunt J D.Steady state columnar and equiaxed growth of dendrites and eutectic[J]. Mater. Sci. Eng., 1984, 65: 75 | [2] | Gandin C A, Rappaz M.Coupled finite element-cellular automaton model for the prediction of dendritic grain structures in solidification processes[J]. Acta Metall. Mater., 1994, 42: 2233 | [3] | Nastac L.Numerical modeling of solidification morphologies and segregation patterns in cast dendritic alloys[J]. Acta Mater., 1999, 47: 4253 | [4] | Dong H B, Yang X L, Lee P D, et al.Simulation of equiaxed growth ahead of an advancing columnar front in directionally solidified Ni-based superalloys[J]. J. Mater. Sci., 2004, 39: 7207 | [5] | Dong H B, Lee P D.Simulation of the columnar-to-equiaxed transition in directionally solidified Al-Cu alloys[J]. Acta Mater., 2005, 53: 659 | [6] | Liu D R, Mangelinck-No?l N, Gandin C A, et al.Structures in directionally solidified Al-7wt.% Si alloys: Benchmark experiments under microgravity[J]. Acta Mater., 2014, 64: 253 | [7] | Spittle J A.Columnar to equiaxed grain transition in as solidified alloys[J]. Int. Mater. Rev., 2006, 51: 247 | [8] | Li X, Gagnoud A, Fautrelle Y, et al.Dendrite fragmentation and columnar-to-equiaxed transition during directional solidification at lower growth speed under a strong magnetic field[J]. Acta Mater., 2012, 60: 3321 | [9] | Li X, Fautrelle Y, Zaidat K, et al.Columnar-to-equiaxed transitions in al-based alloys during directional solidification under a high magnetic field[J]. J. Cryst. Growth, 2010, 312: 267 | [10] | Li X, Ren Z M, Shen Y, et al.Effect of thermoelectric magnetic force on the array of dendrites during directional solidification of Al-Cu alloys in a high magnetic field[J]. Philos. Mag. Lett., 2012, 92: 675 | [11] | Li X, Fautrelle Y, Ren Z M.Influence of thermoelectric effects on the solid-liquid interface shape and cellular morphology in the mushy zone during the directional solidification of Al-Cu alloys under a magnetic field[J]. Acta Mater., 2007, 55: 3803 | [12] | Li X, Gagnoud A, Fautrelle Y, et al.Effect of a transverse magnetic field on solidification structures in unmodified and Sr-modified Al-7wtpctSi alloys during directional solidification[J]. Metall. Mater. Trans., 2016, 47A: 1198 | [13] | Li X, Fautrelle Y, Ren Z M.Influence of an axial high magnetic field on the liquid-solid transformation in Al-Cu hypoeutectic alloys and on the microstructure of the solid[J]. Acta Mater., 2007, 55: 1377 | [14] | Li X, Gagnoud A, Ren Z M, et al.Investigation of thermoelectric magnetic convection and its effect on solidification structure during directional solidification under a low axial magnetic field[J]. Acta Mater., 2009, 57: 2180 | [15] | Li X, Fautrelle Y, Ren Z M.Morphological instability of cell and dendrite during directional solidification under a high magnetic field[J]. Acta Mater., 2008, 56: 3146 | [16] | Li X, Fautrelle Y, Ren Z M.Influence of a high magnetic field on columnar dendrite growth during directional solidification[J]. Acta Mater., 2007, 55: 5333 | [17] | Zhong H, Li C J, Ren Z M, et al.Effect of interdendritic thermoelectric magnetic convection on the evolution of tertiary dendrite during directional solidification[J]. J. Cryst. Growth, 2016, 439: 66 | [18] | Sato J, Omori T, Oikawa K, et al.Cobalt-base high-temperature alloys[J]. Science, 2006, 312: 90 | [19] | Omori T, Oikawa K, Sato J, et al.Partition behavior of alloying elements and phase transformation temperatures in Co-Al-W-base quaternary systems[J]. Intermetallics, 2013, 32: 274 | [20] | Pollock T M, Dibbern J, Tsunekane M, et al.New Co-based γ-γ′ high-temperature alloys[J]. JOM, 2010, 62(1): 58 | [21] | Xue F, Li Z Q, Feng Q. Mo effect on the microstructure in Co-Al-W-based superalloys [J]. Mater. Sci. Forum, 2010, 654-656: 420 | [22] | Shi L, Yu J J, Cui C Y, et al.Effect of Ta additions on microstructure and mechanical properties of a single-crystal Co-Al-W-base alloy[J]. Mater. Lett., 2015, 149: 58 | [23] | Pyczak F, Bauer A, G?ken M, et al.The effect of tungsten content on the properties of L12-hardened Co-Al-W alloys[J]. J. Alloys Compd., 2015, 632: 110 | [24] | Yan Y H, Coakley J, Vorontsov V A, et al.Alloying and the micromechanics of Co-Al-W-X quaternary alloys[J]. Mater. Sci. Eng., 2014, A613: 201 | [25] | Wang J, Ren Z M, Fautrelle Y, et al.Modification of liquid/solid interface shape in directionally solidifying Al-Cu alloys by a transverse magnetic field[J]. J. Mater. Sci., 2013, 48: 213 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|