|
|
兼具成骨和抗感染性能的医用金属材料研究进展 |
林潇1, 葛隽1, 吴水林2, 刘宝华3, 杨惠林1,4, 杨磊1,4( ) |
1苏州大学骨科研究所 苏州 215006 2 湖北大学材料科学与工程学院 武汉 430062 3 深圳大学医学部基础医学院 深圳 518060 4 苏州大学国际骨转化医学联合研究中心 苏州 215006 |
|
Advances in Metallic Biomaterials with both Osteogenic and Anti-Infection Properties |
Xiao LIN1, Jun GE1, Shuilin WU2, Baohua LIU3, Huilin YANG1,4, Lei YANG1,4( ) |
1 Institute of Orthopaedics, Soochow University, Suzhou 215006, China 2 School of Materials Science and Engineering, Hubei University, Wuhan 430062, China 3 Department of Basic Medical Sciences, School of Medicine, Shenzhen University, Shenzhen 518060, China 4 International Research Center for Translational Orthopaedics (IRCTO), Soochow University, Suzhou 215006, China |
引用本文:
林潇, 葛隽, 吴水林, 刘宝华, 杨惠林, 杨磊. 兼具成骨和抗感染性能的医用金属材料研究进展[J]. 金属学报, 2017, 53(10): 1284-1302.
Xiao LIN,
Jun GE,
Shuilin WU,
Baohua LIU,
Huilin YANG,
Lei YANG.
Advances in Metallic Biomaterials with both Osteogenic and Anti-Infection Properties[J]. Acta Metall Sin, 2017, 53(10): 1284-1302.
[1] | Kurtz S M, Ong K L, Schmier J, et al.Future clinical and economic impact of revision total hip and knee arthroplasty[J]. J. Bone. Joint. Surg., 2010, 89(Suppl.3): 144 | [2] | Deysine M.Infections associated with surgical implants[J]. N. Engl. J. Med., 2004, 351: 193 | [3] | Zimmerli W.Prosthetic-joint-associated infections[J]. Best. Pract. Res. Clin. Rheumatol., 2006, 20: 1045 | [4] | Grainger D W, Van Der Mei H C, Jutte P C, et al. Critical factors in the translation of improved antimicrobial strategies for medical implants and devices[J]. Biomaterials, 2013, 34: 9237 | [5] | Wiedel J D.Salvage of infected total knee fusion: The last option[J]. Clin. Orthop. Relat. Res., 2002, (404): 139 | [6] | Campoccia D, Montanaro L, Arciola C R.The significance of infection related to orthopedic devices and issues of antibiotic resistance[J]. Biomaterials, 2006, 27: 2331 | [7] | Neoh K G, Hu X F, Zheng D, et al.Balancing osteoblast functions and bacterial adhesion on functionalized titanium surfaces[J]. Biomaterials, 2012, 33: 2813 | [8] | Zhang E L, Li F B, Wang H Y, et al.A new antibacterial titanium-copper sintered alloy: Preparation and antibacterial property[J]. Mater. Sci. Eng., 2013, C33: 4280 | [9] | Liu J, Li F B, Liu C, et al.Effect of Cu content on the antibacterial activity of titanium-copper sintered alloys[J]. Mater. Sci. Eng., 2014, C35: 392 | [10] | Wen M, Wen C E, Hodgson P, et al.Fabrication of Ti-Nb-Ag alloy via powder metallurgy for biomedical applications[J]. Mater. Des., 2014, 56: 629 | [11] | Nakajo K, Takahashi M, Kikuchi M, et al.Inhibitory effect of Ti-Ag alloy on artificial biofilm formation[J]. Dent. Mater. J., 2014, 33: 389 | [12] | Takahashi M, Kikuchi M, Takada Y, et al.Mechanical properties and microstructures of dental cast Ti-Ag and Ti-Cu alloys[J]. Dent. Mater. J., 2002, 21: 270 | [13] | Hong I T, Koo C H.Antibacterial properties, corrosion resistance and mechanical properties of Cu-modified SUS 304 stainless steel[J]. Mater. Sci. Eng., 2005, A393: 213 | [14] | Zhang E L, Liu C.A new antibacterial Co-Cr-Mo-Cu alloy: Preparation, biocorrosion, mechanical and antibacterial property[J]. Mater. Sci. Eng., 2016, C69: 134 | [15] | Vojtěch D, Kubásek J, ?erák J, et al.Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation[J]. Acta. Biomater., 2011, 7: 3515 | [16] | Robinson D A, Griffith R W, Dan S, et al.In vitro antibacterial properties of magnesium metal against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus[J]. Acta. Biomater., 2010, 6: 1869 | [17] | Tie D, Feyerabend F, Müller W D, et al.Antibacterial biodegradable Mg-Ag alloys[J]. Eur. Cell. Mater., 2013, 25: 284 | [18] | Liu C, Fu X K, Pan H B, et al.Biodegradable Mg-Cu alloys with enhanced osteogenesis, angiogenesis, and long-lasting antibacterial effects[J]. Sci. Rep., 2016, 6: 27374 | [19] | Zhang X B, Yuan G Y, Mao L, et al.Effects of extrusion and heat treatment on the mechanical properties and biocorrosion behaviors of a Mg-Nd-Zn-Zr alloy[J]. J. Mech. Behav. Biomed. Mater., 2012, 7: 77 | [20] | Zhang X B, Yuan G Y, Niu J L, et al.Microstructure, mechanical properties, biocorrosion behavior, and cytotoxicity of as-extruded Mg-Nd-Zn-Zr alloy with different extrusion ratios[J]. J. Mech. Behav. Biomed. Mater., 2012, 9: 153 | [21] | Qin H, Zhao Y C, An Z Q, et al.Enhanced antibacterial properties, biocompatibility, and corrosion resistance of degradable Mg-Nd-Zn-Zr alloy[J]. Biomaterials, 2015, 53: 211 | [22] | Gong H B, Wang K, Strich R, et al.In vitro biodegradation behavior, mechanical properties, and cytotoxicity of biodegradable Zn-Mg alloy[J]. J. Biomed. Mater. Res., 2015, 103: 1632 | [23] | Bal B S, Rahaman M N.Orthopedic applications of silicon nitride ceramics[J]. Acta. Biomater., 2012, 8: 2889 | [24] | Tahal D, Madhavan K, Chieng L O, et al.Metals in spine[J]. World. Neurosurg., 2017, 100: 619 | [25] | Soultanis K C, Pyrovolou N, Zahos K A, et al.Late postoperative infection following spinal instrumentation: Stainless steel versus titanium implants[J]. J. Surg. Orthop. Adv., 2008, 17: 193 | [26] | Ren L, Yang K, Guo L, et al.Preliminary study of anti-infective function of a copper-bearing stainless steel[J]. Mater. Sci. Eng., 2012, C32: 1204 | [27] | Chai H W, Guo L, Wang X T, et al.Antibacterial effect of 317L stainless steel contained copper in prevention of implant-related infection in vitro and in vivo[J]. J. Mater. Sci. Mater. Med., 2011, 22: 2525 | [28] | Ren L, Wong H M, Yan C H, et al.Osteogenic ability of Cu-bearing stainless steel[J]. J. Biomed. Mater. Res., 2015, 103B: 1433 | [29] | Nagels J, Stokdijk M, Rozing P M.Stress shielding and bone resorption in shoulder arthroplasty[J]. J. Shoulder. Elb. Surg., 2003, 12: 35 | [30] | Kang M K, Moon S K, Kwon J S, et al.Antibacterial effect of sand blasted, large-grit, acid-etched treated Ti-Ag alloys[J]. Mater. Res. Bull., 2012, 47: 2952 | [31] | Shirai T, Tsuchiya H, Shimizu T, et al.Prevention of pin tract infection with titanium-copper alloys[J]. J. Biomed. Mater. Res., 2010, 91B: 373 | [32] | Zhang E L, Zheng L L, Liu J, et al.Influence of Cu content on the cell biocompatibility of Ti-Cu sintered alloys[J]. Mater. Sci. Eng., 2015, C46: 148 | [33] | Liu R, Memarzadeh K, Chang B, et al.Antibacterial effect of copper-bearing titanium alloy (Ti-Cu) against Streptococcus mutans and Porphyromonas gingivalis[J]. Sci. Rep., 2016, 6: 29985 | [34] | Ren L, Ma Z, Li M, et al.Antibacterial properties of Ti-6Al-4V-xCu alloys[J]. J. Mater. Sci. Technol., 2014, 30: 699 | [35] | Naji A, Harmand M.Study of the effect of the surface state on the cytocompatibility of a Co-Cr alloy using human osteoblasts and fibroblasts[J]. J. Biomed. Mater. Res., 1990, 24: 861 | [36] | Chen Q Z, Thouas G A.Metallic implant biomaterials[J]. Mater. Sci. Eng., 2015, R87: 1 | [37] | Marti A.Cobalt-base alloys used in bone surgery[J]. Injury, 2000, 31(Suppl.4): D18 | [38] | Wang S, Yang C G, Ren L, et al.Study on antibacterial performance of Cu-bearing cobalt-based alloy[J]. Mater. Lett., 2014, 129: 88 | [39] | Ren L, Memarzadeh K, Zhang S Y, et al.A novel coping metal material CoCrCu alloy fabricated by selective laser melting with antimicrobial and antibiofilm properties[J]. Mater. Sci. Eng., 2016, C67: 461 | [40] | Liu Y H, Padmanabhan J, Cheung B, et al.Combinatorial development of antibacterial Zr-Cu-Al-Ag thin film metallic glasses[J]. Sci. Rep., 2016, 6: 26950 | [41] | Windhagen H, Radtke K, Weizbauer A, et al.Biodegradable magnesium-based screw clinically equivalent to titanium screw in hallux valgus surgery: Short term results of the first prospective, randomized, controlled clinical pilot study[J]. Biomed. Eng. Online, 2013, 12: 62 | [42] | Zhang Q, Lin X, Qi Z R, et al.Magnesium alloy for repair of lateral tibial plateau defect in minipig model[J]. J. Mater. Sci. Technol., 2013, 29: 539 | [43] | Witte F, Kaese V, Haferkamp H, et al.In vivo corrosion of four magnesium alloys and the associated bone response[J]. Biomaterials, 2005, 26: 3557 | [44] | Lin X, Tan L L, Wang Q, et al.In vivo degradation and tissue compatibility of ZK60 magnesium alloy with micro-arc oxidation coating in a transcortical model[J]. Mater. Sci. Eng., 2013, C33: 3881 | [45] | Lin X, Yang X M, Tan L L, et al.In vitro degradation and biocompatibility of a strontium-containing micro-arc oxidation coating on the biodegradable ZK60 magnesium alloy[J]. Appl. Surf. Sci., 2014, 288: 718 | [46] | Li Y, Liu G W, Zhai Z J, et al.Antibacterial properties of magnesium in vitro and in an in vivo model of implant-associated methicillin-resistant Staphylococcus aureus infection[J]. Antimicrob. Agents. Chemother., 2014, 58: 7586 | [47] | Rahim M I, Eifler R, Rais B, et al.Alkalization is responsible for antibacterial effects of corroding magnesium[J]. J. Biomed. Mater. Res., 2015, 103A: 3526 | [48] | Feng H Q, Wang G M, Jin W H, et al.Systematic study of inherent antibacterial properties of magnesium-based biomaterials[J]. ACS. Appl. Mater. Interfaces, 2016, 8: 9662 | [49] | J?hn K, Saito H, Taipaleenm?ki H, et al.Intramedullary Mg2Ag nails augment callus formation during fracture healing in mice[J]. Acta Biomater., 2016, 36: 350 | [50] | Li Y, Liu L N, Wan P, et al.Biodegradable Mg-Cu alloy implants with antibacterial activity for the treatment of osteomyelitis: In vitro and in vivo evaluations[J]. Biomaterials, 2016, 106: 250 | [51] | He G P, Wu Y H, Zhang Y, et al.Addition of Zn to the ternary Mg-Ca-Sr alloys significantly improves their antibacterial properties[J]. J. Mater. Chem., 2015, 3: 6676 | [52] | Lock J Y, Wyatt E, Upadhyayula S, et al.Degradation and antibacterial properties of magnesium alloys in artificial urine for potential resorbable ureteral stent applications[J]. J. Biomed. Mater. Res., 2014, 102A: 781 | [53] | Qin H, Cao H L, Zhao Y C, et al.In vitro and in vivo anti-biofilm effects of silver nanoparticles immobilized on titanium[J]. Biomaterials, 2014, 35: 9114 | [54] | Jin G D, Cao H L, Qiao Y Q, et al.Osteogenic activity and antibacterial effect of zinc ion implanted titanium[J]. Colloids. Surf., 2014, 117B: 158 | [55] | Jin G D, Qin H, Cao H L, et al.Synergistic effects of dual Zn/Ag ion implantation in osteogenic activity and antibacterial ability of titanium[J]. Biomaterials, 2014, 35: 7699 | [56] | Fiedler J, Kolitsch A, Kleffner B, et al.Copper and silver ion implantation of aluminium oxide-blasted titanium surfaces: Proliferative response of osteoblasts and antibacterial effects[J]. Int. J. Artif. Organs., 2011, 34: 882 | [57] | Dan Z G, Ni H W, Xu B F, et al.Microstructure and antibacterial properties of AISI 420 stainless steel implanted by copper ions[J]. Thin Solid Films, 2005, 492: 93 | [58] | Necula B S, Fratila-Apachitei L E, Zaat S A J, et al. In vitro antibacterial activity of porous TiO2-Ag composite layers against methicillin-resistant Staphylococcus aureus[J]. Acta. Biomater., 2009, 5: 3573 | [59] | Necula B S, Van Leeuwen J P T M, Fratila-Apachitei L E, et al. In vitro cytotoxicity evaluation of porous TiO2-Ag antibacterial coatings for human fetal osteoblasts[J]. Acta Biomater., 2012, 8: 4191 | [60] | Zhao L Z, Wang H R, Huo K F, et al.Antibacterial nano-structured titania coating incorporated with silver nanoparticles[J]. Biomaterials, 2011, 32: 5706 | [61] | Das K, Bose S, Bandyopadhyay A, et al.Surface coatings for improvement of bone cell materials and antimicrobial activities of Ti implants[J]. J. Biomed. Mater. Res., 2008, 87B: 455 | [62] | Uhm S H, Song D H, Kwon J S, et al.Tailoring of antibacterial Ag nanostructures on TiO2 nanotube layers by magnetron sputtering[J]. J. Biomed. Mater. Res., 2014, 102B: 592 | [63] | Hu H, Zhang W, Qiao Y C, et al.Antibacterial activity and increased bone marrow stem cell functions of Zn-incorporated TiO2 coatings on titanium[J]. Acta. Biomater., 2012, 8: 904 | [64] | Li Y, Xiong W, Zhang C, et al.Enhanced osseointegration and antibacterial action of zinc-loaded titania-nanotube-coated titanium substrates: In vitro and in vivo studies[J]. J. Biomed. Mater. Res., 2014, 102A: 3939 | [65] | Tian Y X, Cao H L, Qiao Y Q, et al.Antibacterial activity and cytocompatibility of titanium oxide coating modified by iron ion implantation[J]. Acta. Biomater., 2014, 10: 4505 | [66] | Wu Q J, Li J H, Zhang W J, et al.Antibacterial property, angiogenic and osteogenic activity of Cu-incorporated TiO2 coating[J]. J. Mater. Chem., 2014, 2B: 6738 | [67] | Hang R Q, Gao A, Huang X B, et al.Antibacterial activity and cytocompatibility of Cu-Ti-O nanotubes[J]. J. Biomed. Mater. Res., 2014, 102A: 1850 | [68] | Chen W, Oh S, Ong A P, et al.Antibacterial and osteogenic properties of silver-containing hydroxyapatite coatings produced using a sol gel process[J]. J. Biomed. Mater. Res., 2007, 82A: 899 | [69] | Song W H, Ryu H S, Hong S H.Antibacterial properties of Ag (or Pt)-containing calcium phosphate coatings formed by micro-arc oxidation[J]. J. Biomed. Mater. Res., 2009, 88A: 246 | [70] | Huang Y, Zhang X J, Zhao R L, et al.Antibacterial efficacy, corrosion resistance, and cytotoxicity studies of copper-substituted carbonated hydroxyapatite coating on titanium substrate[J]. J. Mater. Sci., 2015, 50: 1688 | [71] | Fielding G A, Roy M, Bandyopadhyay A, et al.Antibacterial and biological characteristics of silver containing and strontium doped plasma sprayed hydroxyapatite coatings[J]. Acta. Biomater., 2012, 8: 3144 | [72] | Ge X, Leng Y, Bao C Y, et al.Antibacterial coatings of fluoridated hydroxyapatite for percutaneous implants[J]. J. Biomed. Mater. Res., 2010, 95A: 588 | [73] | Pishbin F, Mouri?o V, Gilchrist J B, et al.Single-step electrochemical deposition of antimicrobial orthopaedic coatings based on a bioactive glass/chitosan/nano-silver composite system[J]. Acta Biomater., 2013, 9: 7469 | [74] | Li K, Xie Y T, Huang L P, et al.Antibacterial mechanism of plasma sprayed Ca2ZnSi2O7 coating against Escherichia coli[J]. J. Mater. Sci. Mater. Med., 2013, 24: 171 | [75] | Li K, Yu J M, Xie Y T, et al.Chemical stability and antimicrobial activity of plasma sprayed bioactive Ca2ZnSi2O7 coating[J]. J. Mater. Sci. Mater. Med., 2011, 22: 2781 | [76] | Li B E, Liu X Y, Cao C, et al.Preparation and antibacterial effect of plasma sprayed wollastonite coatings loading silver[J]. Appl. Surf. Sci., 2008, 255: 452 | [77] | Kalaivani S, Singh R K, Ganesan V, et al.Effect of copper (Cu2+) inclusion on the bioactivity and antibacterial behavior of calcium silicate coatings on titanium metal[J]. J. Mater. Chem., 2014, 2B: 846 | [78] | Zhao Y, Jamesh M I, Li W K, et al.Enhanced antimicrobial properties, cytocompatibility, and corrosion resistance of plasma-modified biodegradable magnesium alloys[J]. Acta Biomater., 2014, 10: 544 | [79] | Huang H L, Chang Y Y, Chen Y C, et al.Cytocompatibility and antibacterial properties of zirconia coatings with different silver contents on titanium[J]. Thin Solid Films, 2013, 549: 108 | [80] | Chua P H, Neoh K G, Kang E T, et al.Surface functionalization of titanium with hyaluronic acid/chitosan polyelectrolyte multilayers and RGD for promoting osteoblast functions and inhibiting bacterial adhesion[J]. Biomaterials, 2008, 29: 1412 | [81] | Zhao L, Hu Y, Xu D W, et al.Surface functionalization of titanium substrates with chitosan-lauric acid conjugate to enhance osteoblasts functions and inhibit bacteria adhesion[J]. Colloids. Surf. Biointerf., 2014, 119B: 115 | [82] | Song L, Gan L, Xiao Y F, et al.Antibacterial hydroxyapatite/chitosan complex coatings with superior osteoblastic cell response[J]. Mater. Lett., 2011, 65: 974 | [83] | Kazemzadeh-Narbat M, Kindrachuk J, Duan K, et al.Antimicrobial peptides on calcium phosphate-coated titanium for the prevention of implant-associated infections[J]. Biomaterials, 2010, 31: 9519 | [84] | Xiong J, Xu B F, Ni H W.Antibacterial and corrosive properties of copper implanted austenitic stainless steel[J]. Int. J. Min. Met. Mater., 2009, 16: 293 | [85] | Wan Y Z, Raman S, He F, et al.Surface modification of medical metals by ion implantation of silver and copper[J]. Vacuum, 2007, 81: 1114 | [86] | Tan A W, Pingguan-Murphy B, Ahmad R, et al.Review of titania nanotubes: Fabrication and cellular response[J]. Ceram. Int., 2012, 38: 4421 | [87] | Geetha M, Singh A K, Asokamani R, et al.Ti based biomaterials, the ultimate choice for orthopaedic implants—A review[J]. Prog. Mater. Sci., 2009, 54: 397 | [88] | Wu P G, Xie R C, Imlay K, et al.Visible-light-induced bactericidal activity of titanium dioxide codoped with nitrogen and silver[J]. Environ. Sci. Technol., 2010, 44: 6992 | [89] | Stani? V, Dimitrijevi? S, Anti?-Stankovi? J, et al.Synthesis, characterization and antimicrobial activity of copper and zinc-doped hydroxyapatite nanopowders[J]. Appl. Surf. Sci., 2010, 256: 6083 | [90] | Stani? V, Jana?kovi? D, Dimitrijevi? S, et al.Synthesis of antimicrobial monophase silver-doped hydroxyapatite nanopowders for bone tissue engineering[J]. Appl. Surf. Sci., 2011, 257: 4510 | [91] | Kim T N, Feng Q L, Kim J O, et al.Antimicrobial effects of metal ions (Ag+, Cu2+, Zn2+) in hydroxyapatite[J]. J. Mater. Sci. Mater. Med., 1998, 9: 129 | [92] | Chung R J, Hsieh M F, Huang K C, et al.Anti-microbial hydroxyapatite particles synthesized by a sol-gel route[J]. J. Sol. Gel. Sci. Technol., 2005, 33: 229 | [93] | Matsumoto N, Sato K, Yoshida K, et al.Preparation and characterization of β-tricalcium phosphate co-doped with monovalent and divalent antibacterial metal ions[J]. Acta Biomater., 2009, 5: 3157 | [94] | Singh R K, Kannan S.Synthesis, structural analysis, mechanical, antibacterial and Hemolytic activity of Mg2+ and Cu2+ co-substitutions in β-Ca3(PO4)2[J]. Mater. Sci. Eng., 2014, C45: 530 | [95] | Chung R J, Hsieh M F, Huang C W, et al.Antimicrobial effects and human gingival biocompatibility of hydroxyapatite sol-gel coatings[J]. J. Biomed. Mater. Res., 2006, 76B: 169 | [96] | Huang Y, Zhang X J, Mao H H, et al.Osteoblastic cell responses and antibacterial efficacy of Cu/Zn co-substituted hydroxyapatite coatings on pure titanium using electrodeposition method[J]. RSC Adv., 2015, 5: 17076 | [97] | Xie C M, Lu X, Wang K F, et al.Silver nanoparticles and growth factors incorporated hydroxyapatite coatings on metallic implant surfaces for enhancement of osteoinductivity and antibacterial properties[J]. ACS. Appl. Mater. Interfaces, 2014, 6: 8580 | [98] | Cheng K, Weng W J, Wang H M, et al.In vitro behavior of osteoblast-like cells on fluoridated hydroxyapatite coatings[J]. Biomaterials, 2005, 26: 6288 | [99] | Li J N, Song Y, Zhang S X, et al.In vitro responses of human bone marrow stromal cells to a fluoridated hydroxyapatite coated biodegradable Mg-Zn alloy[J]. Biomaterials, 2010, 31: 5782 | [100] | Wiegand A, Buchalla W, Attin T.Review on fluoride-releasing restorative materials—fluoride release and uptake characteristics, antibacterial activity and influence on caries formation[J]. Dent. Mater., 2007, 23: 343 | [101] | Hench L L.The story of Bioglass?[J]. J. Mater. Sci. Mater. Med., 2006, 17: 967 | [102] | Zhang D, Lepp?ranta O, Munukka E, et al.Antibacterial effects and dissolution behavior of six bioactive glasses[J]. J. Biomed. Mater. Res., 2010, 93A: 475 | [103] | Bellantone M, Coleman N J, Hench L L.Bacteriostatic action of a novel four-component bioactive glass[J]. J. Biomed. Mater. Res., 2000, 51A: 484 | [104] | Bellantone M, Williams H D, Hench L L.Broad-spectrum bactericidal activity of Ag2O-doped bioactive glass[J]. Antimicrob. Agents. Chemother., 2002, 46: 1940 | [105] | Catauro M, Raucci M G, De Gaetano F, et al.Antibacterial and bioactive silver-containing Na2O CaO 2SiO2 glass prepared by sol-gel method[J]. J. Mater. Sci. Mater. Med., 2004, 15: 831 | [106] | Wu C T, Zhou Y H, Xu M C, et al.Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity[J]. Biomaterials, 2013, 34: 422 | [107] | Neel E A A, Ahmed I, Pratten J, et al. Characterisation of antibacterial copper releasing degradable phosphate glass fibres[J]. Biomaterials, 2005, 26: 2247 | [108] | Palza H, Escobar B, Bejarano J, et al.Designing antimicrobial bioactive glass materials with embedded metal ions synthesized by the sol-gel method[J]. Mater. Sci. Eng., 2013, C33: 3795 | [109] | Sánchez-Salcedo S, Shruti S, Salinas A J, et al.In vitro antibacterial capacity and cytocompatibility of SiO2-CaO-P2O5 meso-macroporous glass scaffolds enriched with ZnO[J]. J. Mater. Chem., 2014, 2B: 4836 | [110] | Lopez-Esteban S, Saiz E, Fujino S, et al.Bioactive glass coatings for orthopedic metallic implants[J]. J. Eur. Ceram. Soc., 2003, 23: 2921 | [111] | Fathi M H, Doostmohammadi A.Bioactive glass nanopowder and bioglass coating for biocompatibility improvement of metallic implant[J]. J. Mater. Process. Technol., 2009, 209: 1385 | [112] | Aina V, Perardi A, Bergandi L, et al.Cytotoxicity of zinc-containing bioactive glasses in contact with human osteoblasts[J]. Chem. Biol. Interact., 2007, 167: 207 | [113] | Hoppe A, Güldal N S, Boccaccini A R.A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics[J]. Biomaterials, 2011, 32: 2757 | [114] | Zhai W Y, Lu H X, Chen L, et al.Silicate bioceramics induce angiogenesis during bone regeneration[J]. Acta Biomater., 2012, 8: 341 | [115] | Li H Y, Xue K, Kong N, et al.Silicate bioceramics enhanced vascularization and osteogenesis through stimulating interactions between endothelia cells and bone marrow stromal cells[J]. Biomaterials, 2014, 35: 3803 | [116] | Yu J M, Li K, Zheng X B, et al.In vitro and in vivo evaluation of zinc-modified Ca-Si-based ceramic coating for bone implants[J]. PLoS One, 2013, 8(3): e57564 | [117] | Hempel U, Hefti T, Kalbacova M, et al.Response of osteoblast-like SAOS-2 cells to zirconia ceramics with different surface topographies[J]. Clin. Oral. Implants. Res., 2010, 21: 174 | [118] | Stadlinger B, Hennig M, Eckelt U, et al.Comparison of zirconia and titanium implants after a short healing period. A pilot study in minipigs[J]. Int. J. Oral. Maxillofac. Surg., 2010, 39: 585 | [119] | Scarano A, Piattelli M, Caputi S, et al.Bacterial adhesion on commercially pure titanium and zirconium oxide disks: An in vivo human study[J]. J. Periodontol., 2004, 75: 292 | [120] | Al-Radha A S D, Dymock D, Younes C, et al. Surface properties of titanium and zirconia dental implant materials and their effect on bacterial adhesion[J]. J. Dent., 2012, 40: 146 | [121] | Cortizo M C, Oberti T G, Cortizo M S, et al.Chlorhexidine delivery system from titanium/polybenzyl acrylate coating: Evaluation of cytotoxicity and early bacterial adhesion[J]. J. Dent., 2012, 40: 329 | [122] | Yang X C, Chen X N, Wang H J.Acceleration of osteogenic differentiation of preosteoblastic cells by chitosan containing nanofibrous scaffolds[J]. Biomacromolecules, 2009, 10: 2772 | [123] | Costa-Pinto A R, Correlo V M, Sol P C, et al. Osteogenic differentiation of human bone marrow mesenchymal stem cells seeded on melt based chitosan scaffolds for bone tissue engineering applications[J]. Biomacromolecules, 2009, 10: 2067 | [124] | Liu X F, Guan Y L, Yang D Z, et al.Antibacterial action of chitosan and carboxymethylated chitosan[J]. J. Appl. Polym. Sci., 2001, 79: 1324 | [125] | No H K, Park N Y, Lee S H, et al.Antibacterial activity of chitosans and chitosan oligomers with different molecular weights[J]. Int. J. Food Microbiol., 2002, 74: 65 | [126] | Tan H L, Ma R, Lin C C, et al.Quaternized chitosan as an antimicrobial agent: Antimicrobial activity, mechanism of action and biomedical applications in orthopedics[J]. Int. J. Mol. Sci., 2013, 14: 1854 | [127] | Song L, Xiao Y F, Gan L, et al.The effect of antibacterial ingredients and coating microstructure on the antibacterial properties of plasma sprayed hydroxyapatite coatings[J]. Surf. Coat. Technol., 2012, 206: 2986 | [128] | Liu Y, Zheng Z, Zara J N, et al.The antimicrobial and osteoinductive properties of silver nanoparticle/poly (DL-lactic-co-glycolic acid)-coated stainless steel[J]. Biomaterials, 2012, 33: 8745 | [129] | Zhang X M, Li Z Y, Yuan X B, et al.Cytotoxicity and antibacterial property of titanium alloy coated with silver nanoparticle-containing polyelectrolyte multilayer[J]. Mater. Sci. Eng., 2013, C33: 2816 | [130] | Xu D W, Yang W H, Hu Y, et al.Surface functionalization of titanium substrates with cecropin B to improve their cytocompatibility and reduce inflammation responses[J]. Colloids. Surf. Biointerf., 2013, 110B: 225 | [131] | Schaer T P, Stewart S, Hsu B B, et al.Hydrophobic polycationic coatings that inhibit biofilms and support bone healing during infection[J]. Biomaterials, 2012, 33: 1245 | [132] | Zhang F, Zhang Z B, Zhu X L, et al.Silk-functionalized titanium surfaces for enhancing osteoblast functions and reducing bacterial adhesion[J]. Biomaterials, 2008, 29: 4751 | [133] | Alcheikh A, Pavon-Djavid G, Helary G, et al.PolyNaSS grafting on titanium surfaces enhances osteoblast differentiation and inhibits Staphylococcus aureus adhesion[J]. J. Mater. Sci. Mater. Med., 2013, 24: 1745 | [134] | Sutha S, Dhineshbabu N R, Prabhu M, et al.Mg-doped hydroxyapatite/chitosan composite coated 316L stainless steel implants for biomedical applications[J]. J. Nanosci. Nanotechnol., 2015, 15: 4178 | [135] | Kazemzadeh-Narbat M, Noordin S, Masri B A, et al.Drug release and bone growth studies of antimicrobial peptide-loaded calcium phosphate coating on titanium[J]. J. Biomed. Mater. Res., 2012, 100B: 1344 | [136] | Erakovi? S, Jankovi? A, Mati? I Z, et al.Investigation of silver impact on hydroxyapatite/lignin coatings electrodeposited on titanium[J]. Mater. Chem. Phys., 2013, 142: 521 | [137] | Erakovic? S, Jankovic? A, Veljovic? D, et al. Corrosion stability and bioactivity in simulated body fluid of silver/hydroxyapatite and silver/hydroxyapatite/lignin coatings on titanium obtained by electrophoretic deposition[J]. J. Phys. Chem., 2012, 117B: 1633 | [138] | Erakovi? S, Veljovi? D, Diouf P N, et al.The effect of lignin on the structure and characteristics of composite coatings electrodeposited on titanium[J]. Prog. Org. Coat., 2012, 75: 275 | [139] | Feng Q L, Wu J, Chen G Q, et al.A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus[J]. J. Biomed. Mater. Res., 2000, 52: 662 | [140] | Gordon O, Slenters T V, Brunetto P S, et al.Silver coordination polymers for prevention of implant infection: Thiol interaction, impact on respiratory chain enzymes, and hydroxyl radical induction[J]. Antimicrob. Agents. Chemother., 2010, 54: 4208 | [141] | Jung W K, Koo H C, Kim K W, et al.Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli[J]. Appl. Environ. Microbiol., 2008, 74: 2171 | [142] | Grass G, Rensing C, Solioz M.Metallic copper as an antimicrobial surface[J]. Appl. Environ. Microbiol., 2011, 77: 1541 | [143] | Raffi M, Mehrwan S, Bhatti T M, et al.Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli[J]. Ann. Microbiol., 2010, 60: 75 | [144] | Rico H, Roca-Botran C, Hernandez E R, et al.The effect of supplemental copper on osteopenia induced by ovariectomy in rats[J]. Menopause, 2000, 7: 413 | [145] | Yee C D, Kubena K S, Walker M, et al.The relationship of nutritional copper to the development of postmenopausal osteoporosis in rats[J]. Biol. Trace. Elem. Res., 1995, 48: 1 | [146] | Rodríguez J P, Rios S, González M.Modulation of the proliferation and differentiation of human mesenchymal stem cells by copper[J]. J. Cell. Biochem., 2002, 85: 92 | [147] | Hu G F.Copper stimulates proliferation of human endothelial cells under culture[J]. J. Cell. Biochem., 1998, 69: 326 | [148] | Sen C K, Khanna S, Venojarvi M, et al.Copper-induced vascular endothelial growth factor expression and wound healing[J]. Am. J. Physiol. Heart. Circ. Physiol., 2002, 282: H1821 | [149] | De Lima M, McMannis J, Gee A, et al. Transplantation of ex vivo expanded cord blood cells using the copper chelator tetraethylenepentamine: A phase I/II clinical trial[J]. Bone. Marrow. Transpl., 2008, 41: 771 | [150] | Raghupathi K R, Koodali R T, Manna A C.Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles[J]. Langmuir, 2011, 27: 4020 | [151] | Boyd D, Li H, Tanner D A, et al.The antibacterial effects of zinc ion migration from zinc-based glass polyalkenoate cements[J]. J. Mater. Sci. Mater. Med., 2006, 17: 489 | [152] | Phan T N, Buckner T, Sheng J, et al.Physiologic actions of zinc related to inhibition of acid and alkali production by oral streptococci in suspensions and biofilms[J]. Mol. Oral. Microbiol., 2004, 19: 31 | [153] | Tapiero H, Tew K D.Trace elements in human physiology and pathology: Zinc and metallothioneins[J]. Biomed. Pharmacother., 2003, 57: 399 | [154] | Prasad A S, Bao B, Beck F W J, et al. Antioxidant effect of zinc in humans[J]. Free Radical. Biol. Med., 2004, 37: 1182 | [155] | Yamaguchi M.Role of zinc in bone formation and bone resorption[J]. J. Trace. Elem. Exp. Med., 1998, 11: 119 | [156] | Kwun I S, Cho Y E, Lomeda R A R, et al. Zinc deficiency suppresses matrix mineralization and retards osteogenesis transiently with catch-up possibly through Runx 2 modulation[J]. Bone, 2010, 46: 732 | [157] | Kumar M N V R. A review of chitin and chitosan applications[J]. React. Funct. Polym., 2000, 46: 1 | [158] | Rabea E I, Badawy M E T, Stevens C V, et al. Chitosan as antimicrobial agent: Applications and mode of action[J]. Biomacromolecules, 2003, 4: 1457 | [159] | Seol Y J, Lee J Y, Park Y J, et al.Chitosan sponges as tissue engineering scaffolds for bone formation[J]. Biotechnol. Lett., 2004, 26: 1037 | [160] | Salditt T, Li C C, Spaar A.Structure of antimicrobial peptides and lipid membranes probed by interface-sensitive X-ray scattering[J]. Biochim. Biophys. Acta Biomembr., 2006, 1758: 1483 | [161] | Chan D I, Prenner E J, Vogel H J.Tryptophan-and arginine-rich antimicrobial peptides: Structures and mechanisms of action[J]. Biochim. Biophys. Acta Biomembr., 2006, 1758: 1184 | [162] | Hale J D F, Hancock R E W. Alternative mechanisms of action of cationic antimicrobial peptides on bacteria[J]. Expert. Rev. Anti. Infect. Ther., 2007, 5: 951 | [163] | Jenssen H, Hancock R E.Therapeutic potential of HDPs as immunomodulatory agents[J]. Methods Mol. Biol., 2010, 618: 329 | [164] | Mouri?o V, Cattalini J P, Boccaccini A R.Metallic ions as therapeutic agents in tissue engineering scaffolds: An overview of their biological applications and strategies for new developments[J]. J. R. Soc. Interface, 2012, 9: 401 | [165] | Habibovic P, Barralet J E.Bioinorganics and biomaterials: Bone repair[J]. Acta Biomater., 2011, 7: 3013 | [166] | Bose S, Fielding G, Tarafder S, et al.Understanding of dopant-induced osteogenesis and angiogenesis in calcium phosphate ceramics[J]. Trends. Biotechnol., 2013, 31: 594 | [167] | Gorth D J, Puckett S, Ercan B, et al.Decreased bacteria activity on Si3N4 surfaces compared with PEEK or titanium[J]. Int. J. Nanomedicine, 2012, 7: 4829 | [168] | An Y H, Friedman R J.Concise review of mechanisms of bacterial adhesion to biomaterial surfaces[J]. J. Biomed. Mater. Res., 1998, 43A: 338 | [169] | Woodling S E, Moraru C I.Influence of surface topography on the effectiveness of pulsed light treatment for the inactivation of Listeria innocua on stainless-steel surfaces[J]. J. Food Sci., 2005, 70: M345 | [170] | Puckett S D, Taylor E, Raimondo T, et al.The relationship between the nanostructure of titanium surfaces and bacterial attachment[J]. Biomaterials, 2010, 31: 706 | [171] | Mitik-Dineva N, Wang J, Truong V K, et al.Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus attachment patterns on glass surfaces with nanoscale roughness[J]. Curr. Microbiol., 2009, 58: 268 | [172] | Khang D, Kim S Y, Liu-Snyder P, et al.Enhanced fibronectin adsorption on carbon nanotube/poly (carbonate) urethane: Independent role of surface nano-roughness and associated surface energy[J]. Biomaterials, 2007, 28: 4756 | [173] | Webster T J, Ejiofor J U.Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo[J]. Biomaterials, 2004, 25: 4731 | [174] | Zhao G, Raines A L, Wieland M, et al.Requirement for both micron-and submicron scale structure for synergistic responses of osteoblasts to substrate surface energy and topography[J]. Biomaterials, 2007, 28: 2821 | [175] | Lim J Y, Dreiss A D, Zhou Z Y, et al.The regulation of integrin-mediated osteoblast focal adhesion and focal adhesion kinase expression by nanoscale topography[J]. Biomaterials, 2007, 28: 1787 | [176] | Biggs M J P, Richards R G, Gadegaard N, et al. Interactions with nanoscale topography: Adhesion quantification and signal transduction in cells of osteogenic and multipotent lineage[J]. J. Biomed. Mater. Res., 2009, 91A: 195 | [177] | Watari S, Hayashi K, Wood J A, et al.Modulation of osteogenic differentiation in hMSCs cells by submicron topographically-patterned ridges and grooves[J]. Biomaterials, 2012, 33: 128 | [178] | Ploux L, Anselme K, Dirani A, et al.Opposite responses of cells and bacteria to micro/nanopatterned surfaces prepared by pulsed plasma polymerization and UV-irradiation[J]. Langmuir, 2009, 25: 8161 | [179] | Absolom D R, Lamberti F V, Policova Z, et al.Surface thermodynamics of bacterial adhesion[J]. Appl. Environ. Microbiol., 1983, 46: 90 | [180] | Zhang L, Ning C Y, Zhou T, et al.Polymeric nanoarchitectures on Ti-based implants for antibacterial applications[J]. ACS. Appl. Mater. Interfaces, 2014, 6: 17323 | [181] | Dalton H M, Poulsen L K, Halasz P, et al.Substratum-induced morphological changes in a marine bacterium and their relevance to biofilm structure[J]. J. Bacteriol., 1994, 176: 6900 | [182] | Hogt A H, Dankert J, Feijen J A N. Adhesion of Staphylococcus epidermidis and Staphylococcus saprophyticus to a hydrophobic biomaterial[J]. Microbiology, 1985, 131: 2485 | [183] | Hayashi H, Seiki H, Tsuneda S, et al.Influence of growth phase on bacterial cell electrokinetic characteristics examined by soft particle electrophoresis theory[J]. J. Colloid Interface Sci., 2003, 264: 565 | [184] | Roosjen A, Norde W, Van Der Mei H C, et al. The use of positively charged or low surface free energy coatings versus polymer brushes in controlling biofilm formation [A]. Characterization of Polymer Surfaces and Thin Films[M]. Berlin Heidelberg: Springer, 2006: 138 | [185] | Wilson C J, Clegg R E, Leavesley D I, et al.Mediation of biomaterial-cell interactions by adsorbed proteins: A review[J]. Tissue. Eng., 2005, 11: 1 | [186] | Liao H H, Andersson A S, Sutherland D, et al.Response of rat osteoblast-like cells to microstructured model surfaces in vitro[J]. Biomaterials, 2003, 24: 649 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|