Please wait a minute...
金属学报  2012, Vol. 48 Issue (9): 1081-1088    DOI: 10.3724/SP.J.1037.2012.00177
  论文 本期目录 | 过刊浏览 |
抗菌时效处理对含Cu双相不锈钢组织和性能的影响 I. 富Cu相的微观结构及演变规律
向红亮, 范金春, 刘东, 郭培培
福州大学机械工程及自动化学院, 福州 350108
EFFECTS OF ANTIBACTERIAL AGING TREATMENT ON MICROSTRUCTURE AND PROPERTIES OF COPPER-CONTAINING DUPLEX STAINLESS STEEL
I. Microstructure and Evolution of Copper-Rich Phase
XIANG Hongliang, FAN Jinchun, LIU Dong, GUO Peipei
School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108
引用本文:

向红亮 范金春 刘东 郭培培. 抗菌时效处理对含Cu双相不锈钢组织和性能的影响 I. 富Cu相的微观结构及演变规律[J]. 金属学报, 2012, 48(9): 1081-1088.
, , , . EFFECTS OF ANTIBACTERIAL AGING TREATMENT ON MICROSTRUCTURE AND PROPERTIES OF COPPER-CONTAINING DUPLEX STAINLESS STEEL
I. Microstructure and Evolution of Copper-Rich Phase[J]. Acta Metall Sin, 2012, 48(9): 1081-1088.

全文: PDF(4825 KB)  
摘要: 采用SEM, XRD以及TEM对经抗菌时效处理后的含Cu双相不锈钢中抗菌富Cu相的微观结构及析出演变规律进行了研究. 结果表明, 在 540-580 ℃温度范围内, 双相不锈钢中的铁素体基体及α/γ相界上均有抗菌富Cu相析出, 奥氏体内没有新相的析出; 随时效时间的延长, 析出相逐渐粗化, 并由球形颗粒状转变为棒状或长条状; 随着时效温度的提高, 富Cu相析出速率加快, 较快地由颗粒状转变为棒状; 时效处理过程中, 富Cu相会随时间的延长及温度的提高从亚稳态过渡到稳定的 ε-Cu相; ε-Cu相具有复杂的多层孪晶结构, 与铁素体基体满足Kurdjumov-Sachs取向关系: (111)ε-Cu//(110)α-Fe, [011]ε-Cu//[001]α-Fe, (111)ε-Cu//(121)α-Fe, [011]ε-Cu//[012]α-Fe.
关键词 含Cu双相不锈钢抗菌时效处理富Cu相微观结构    
Abstract:Nowadays, the events of bacterial infection are increasingly arising. It is urgent to develop new antibacterial material to fight against the bacteria having resistance to drug. Because the antibacterial stainless steels have both antibacterial property and other excellent combination ones, their development has been obtained rapidly. At present, the copper-containing antibacterial stainless steels are the research focus. It has been reached that the antibacterial effect of those materials is due to the copper-rich phases precipitated from the matrix by aging treatment. Most of studies were performed at single-phase stainless steels, but rarely at duplex stainless steels. It is necessary to study the precipitation process of copper-rich phases in duplex stainless steels for the development of antibacterial duplex stainless steels. In this work, the microstructure and precipitating evolution law of copper-rich phases in the copper-containing duplex stainless steels during antibacterial aging treatment has been analyzed in detail by SEM, XRD and TEM. The results indicate that antibacterial copper-rich phases are precipitated from ferrite and α/γ interfaces, no precipitation in austenite when the duplex stainless steels are aged at temperature ranging from 540 to 580 ℃. The technique parameters of the aging treatment have important effect on the volume fraction and morphologies of precipitated phase. With aging time increasing, the precipitates coarsen, and their morphologies gradually change from spherical particle to rod-like or long-stripe-like grain. When the aging temperature is raised, precipitation speed of copper-rich phases accelerates and they make the change like before. At the same time,  the copper-rich phases gradually turn from metastable state to steady ε-Cu phase with the composition close to pure copper, which has complicated multilayer structure with twisting layers. The Kurdjumov--Sachs orientation relationships between ε-Cu phases and the ferrite matrix followed: (111)ε-Cu//(110)α-Fe, [011]ε-Cu//[001]α-Fe, (111)ε-Cu//(121)α-Fe, [011]ε-Cu//[012]α-Fe.
Key wordscopper-containing duplex stainless steel    antibacterial aging treatment    copper-rich phase    microstructure
收稿日期: 2012-04-06     
基金资助:

福建省高等学校新世纪优秀人才支持计划资助项目JA10014

作者简介: 向红亮, 男, 1972年生, 副教授, 博士
[1] Nakamura S, Suzuki S, Ookubo N, Hasegawa M, Miyakusu K. CAMP–ISIJ, 1998; 11: 1147

[2] Ookubo N, Nakamura S, Yamamoto M, Miyakusu K, Hasegawa M. Nisshin Steel Rep Jpn, 1998; 77: 69

[3] Toyokihara C, Nakamura S, Suzuki S, Miyakusu K, Ookubo S, Hasegawa M. CAMP–ISIJ, 1999; 12: 1179

[4] Chen S H, L¨u M Q, Zhang J D, Dong J S, Yang K. Acta Metall Sin, 2004; 40: 314

(陈四红, 吕曼祺, 张敬党, 董加胜, 杨 柯. 金属学报, 2004; 40: 314)

[5] Hong I T, Koo C H. Mater Sci Eng, 2005; A393: 213

[6] Lu M Q, Chen S H, Dong J S, Yang K. Chin J Mater Res, 2005; 19: 581

(吕曼祺, 陈四红, 董加胜, 杨柯. 材料研究学报, 2005; 19: 581)

[7] Li H W, Zhang T B, Zhang T Y. Acta Metall Sin, 2008; 44: 39

(李恒武, 张体宝, 张体勇. 金属学报, 2008; 44: 39)

[8] Li N, Yang K. J Mater Sci Technol, 2010; 26: 941

[9] Robert N G. Duplex Stainless Steels: Microstructure, Properties and Applications. Cambridge: Woodhead Publish Ltd, 1997: 3

[10] Sun W S, Ding G R, Luo M W, Wang Z H, Song A Y. Acta Metall Sin, 1996; 32: 245

(孙文山, 丁桂荣, 罗铭蔚, 王智慧, 宋爱英. 金属学报, 1996; 32: 245)

[11] Xiang H L, Huang W L, Liu D, He F S. Acta Metall Sin, 2010; 46: 304

(向红亮, 黄伟林, 刘东, 何福善. 金属学报, 2010; 46: 304)

[12] Xiang H L, He F S, Liu D. Acta Metall Sin, 2009; 45: 1456

(向红亮, 何福善, 刘 东. 金属学报, 2009; 45: 1456)

[13] Xiang H L, Huang W L, Liu D, He F S, Ruan F R. Trans Mater Heat Treat, 2010; 31(12): 85

(向红亮, 黄伟林, 刘东, 何福善, 阮方如.材料热处理学报, 2010; 31(12): 85)

[14] Martins M, Roossitti S M, Ritoni M. Mater Charact, 2007; 58: 909

[15] Russell S W, Lundin C D. Final Report for the Development of Qualification Standards for Cast Duplex Stainless Steel. Vol.2, Knoxville: University of Tennessee, 2005: 14

[16] Jacek B, Andrzej M. Mater Sci Eng, 2000; A277: 183

[17] Hughes D D. Mater Sci Eng, 1993; A168: 35

[18] Dhua S K, Mukerjee D, Sarma D S. Metall Mater Trans, 2001; 32A: 2259

[19] Murayama M, Hono K, Katayama Y. Metall Mater Trans, 1999; 30A: 345

[20] Zhang Z X, Lin G, Xu Z. Chin J Mater Res, 2008; 29: 93

(张志霞, 林 刚, 徐 洲. 材料研究学报, 2008; 29: 93)

[21] Aaronson H I, Lee J K. In: Aaronson H I ed., Lectures on the Theory of Phase Transformations. Warrendale: TMS–AIME, 1975: 83

[22] Zhang Z X, Lin G, Xu Z. J Mater Sci Technol, 2008; 24: 775

[23] Kolli R P, Seidman D N. Acta Mater, 2008; 56: 2073
[1] 张德印, 郝旭, 贾宝瑞, 吴昊阳, 秦明礼, 曲选辉. Y2O3 含量对燃烧合成Fe-Y2O3 纳米复合粉末性能的影响[J]. 金属学报, 2023, 59(6): 757-766.
[2] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[3] 杨超, 卢海洲, 马宏伟, 蔡潍锶. 选区激光熔化NiTi形状记忆合金研究进展[J]. 金属学报, 2023, 59(1): 55-74.
[4] 解磊鹏, 孙文瑶, 陈明辉, 王金龙, 王福会. 制备工艺对FGH4097高温合金微观组织与性能的影响[J]. 金属学报, 2022, 58(8): 992-1002.
[5] 李金富, 李伟. 铝基非晶合金的结构与非晶形成能力[J]. 金属学报, 2022, 58(4): 457-472.
[6] 张显程, 张勇, 李晓, 王梓萌, 贺琛贇, 陆体文, 王晓坤, 贾云飞, 涂善东. 异构金属材料的设计与制造[J]. 金属学报, 2022, 58(11): 1399-1415.
[7] 马敏静, 屈银虎, 王哲, 王军, 杜丹. Ag-CuO触点材料侵蚀过程的演化动力学及力学性能[J]. 金属学报, 2022, 58(10): 1305-1315.
[8] 王洪伟, 何竹风, 贾楠. 非均匀组织FeMnCoCr高熵合金的微观结构和力学性能[J]. 金属学报, 2021, 57(5): 632-640.
[9] 潘杰, 段峰辉. 非晶合金的回春行为[J]. 金属学报, 2021, 57(4): 439-452.
[10] 李宁, 黄信. 块体非晶合金的3D打印成形研究进展[J]. 金属学报, 2021, 57(4): 529-541.
[11] 周丽, 李明, 王全兆, 崔超, 肖伯律, 马宗义. 31%B4Cp/6061Al复合材料的热变形及加工图的研究[J]. 金属学报, 2020, 56(8): 1155-1164.
[12] 刘天, 罗锐, 程晓农, 郑琦, 陈乐利, 王茜. 形成Al2O3表层的奥氏体不锈钢加速蠕变实验研究[J]. 金属学报, 2020, 56(11): 1452-1462.
[13] 赵宝军,赵宇宏,孙远洋,杨文奎,侯华. Mn含量对Fe-Cu-Mn合金纳米富Cu析出相影响的相场法研究[J]. 金属学报, 2019, 55(5): 593-600.
[14] 李萍, 林泉, 周玉峰, 薛克敏, 吴玉程. W高压扭转显微组织演化过程TEM分析[J]. 金属学报, 2019, 55(4): 521-528.
[15] 吕钊钊,祖宇飞,沙建军,鲜玉强,张伟,崔鼎,严从林. 含Cu界面层碳纤维增强铝基复合材料制备工艺及其力学性能研究[J]. 金属学报, 2019, 55(3): 317-324.