Please wait a minute...
金属学报  2015, Vol. 51 Issue (1): 57-66    DOI: 10.11900/0412.1961.2014.00279
  本期目录 | 过刊浏览 |
激光冲击诱导的航空铝合金表层高熵结构及其抗蚀性
罗新民1, 王翔1(), 陈康敏1,2, 鲁金忠3, 王兰1, 张永康4
1 江苏大学材料科学与工程学院, 镇江 212013
2 江苏大学分析中心, 镇江 212013
3 江苏大学机械工程学院, 镇江 212013
4 东南大学机械工程学院, 南京 210089
SURFACE LAYER HIGH-ENTROPY STRUCTURE AND ANTI-CORROSION PERFORMANCE OF AERO-ALUMINUM ALLOY INDUCED BY LASER SHOCK PROCESSING
LUO Xinmin1(), WANG Xiang1, CHEN Kangmin1,2, LU Jinzhong3, WANG Lan1, ZHANG Yongkang4
1 School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013
2 Analysis and Test Center, Jiangsu University, Zhenjiang 212013
3 School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013
4 School of Mechanical Engineering, Southeast University, Nanjing 210089
引用本文:

罗新民, 王翔, 陈康敏, 鲁金忠, 王兰, 张永康. 激光冲击诱导的航空铝合金表层高熵结构及其抗蚀性[J]. 金属学报, 2015, 51(1): 57-66.
Xinmin LUO, Xiang WANG, Kangmin CHEN, Jinzhong LU, Lan WANG, Yongkang ZHANG. SURFACE LAYER HIGH-ENTROPY STRUCTURE AND ANTI-CORROSION PERFORMANCE OF AERO-ALUMINUM ALLOY INDUCED BY LASER SHOCK PROCESSING[J]. Acta Metall Sin, 2015, 51(1): 57-66.

全文: PDF(10363 KB)   HTML
摘要: 

用7075-T76航空铝合金进行激光冲击表层改性实验, 借助SEM和TEM分析冲击层的微观结构、表层获得的非晶/纳米晶复合材料高熵合金层的演变过程和成因及力学性能与抗腐蚀性能. 结果表明, 激光冲击的超高能量、超快过程导致的绝热剪切热效应诱导材料表层合金体系发生熵增效应及重新配分. 合金体系混合熵的增大促进组元间的混乱度增高, 弱化了杂质原子的不良作用. 激光冲击提供的外场能量促进熵的增量转化为合金中形成非晶态组织所需Gibbs自由能ΔGconf的降低. 多组元铝合金在多次激光冲击强大的外场能量作用过程中, 各组元间按照Boltzmann定律自发重组, 动态析出的纳米晶组织则发挥过程中体系不平衡度的协调作用, 使所获高熵非晶组织更符合Boltzmann关系的热力学要求. 通过热力学自调整和微结构重组, 激光冲击层最终由非晶/纳米晶颗粒复合组成. 同时, 激光冲击的超高应变率诱导的强烈微观应力使时效析出相发生整体塑性形变, 产生平行分布的形变孪晶, 协同吸收激光冲击能量. 由于晶界强化消失和位错密度降低, 激光冲击主要体现为结构重组效应. 激光冲击表层的硬度在单次激光冲击后有所提高, 随冲击次数增加, 硬度逐步与基体硬度持平. 激光冲击造成的强烈形变可使铝合金表层内纳米晶尺寸减小至2~3 nm. 非晶态消除了在第二相周围的原电池腐蚀, 从而使航空铝合金7075-T76表面激光冲击所获非晶/纳米晶复合材料表层的抗腐蚀性能明显改善.

关键词 激光冲击航空铝合金表面改性高熵合金非晶纳米晶抗蚀性    
Abstract

7075 aluminum alloy is an ultra-high strength alloy containing Al, Zn, Mg, Cu and Cr elements, and is widely used in the aviation industry, but it has severe intergranular corrosion characteristics. The high-entropy alloys are composed of more than five major metallic elements and possess excellent corrosion resistance. When laser shock, featuring ultra high energy as well as the thermodynamic and kinetic loading characteristics far-from-equilibrium states, acts on the surface of alloys with multiple elements, high-entropy alloy surface layer with specific properties may be obtained. In this work, surface modification of 7075-T76 aluminum alloy by laser shock was investigated. The microstructure, formation cause of the amorphous/nano-crystalline composite high-entropy alloy surface layer obtained by laser shock, hardness and corrosion resistance of the laser were analyzed by means of SEM and TEM. The results show that the adiabatic shear thermal effect induced by super high energy, ultra-fast process of laser shock causes surface alloy system to occur entropy increase effect and partitioning. The high mixing entropy contributes to the randomization increase of the alloy system. Thus, the elements in the system spontaneously self-organize in accordance with the law of Boltzmann. The dynamical formation of the nano-crystalline grains coordinates the thermodynamic equilibrium during the process. The strain-hardened layer is composed of amorphous microstructure and nanocrystalline grains, and the total depth of it reaches up to about 100 μm. After 1 time laser shock,the depth of the surface high entropy layer is about 20 μm, of which the diameter of the nanocrystalline grains is 6~8 nm. After 3 times laser shock, the thickness of the layer can increase to more than 40 μm, and the diameter of the nanocrystalline grains is 2~3 nm. Meanwhile, the intense ultra high strain-rate induced by the laser shock makes precipitates deform, producing parallelly distribution of deformation twins in order to balance the laser energy. After repeated laser shocks, the hardness of the amorphous/nanocrystalline layer gradually closes to that of the matrix of the alloy because of the disappearing of the support of grain boundaries to the strength, the dislocation strengthening effect in nano-crystalline grains, and the coherent relationship between precipitates and matrix. Due to that the amorphous microstructure can prevent galvanic effect around precipitates, and nano-crystalline has good chemical stability, the nano-crystalline/amorphous composite high-entropy layer on surface of 7075-T76 aluminum alloy induced by laser shock can significantly improve the corrosion resistance, and effectively block the intergranular corrosion of the alloy.

Key wordslaser shock    aero-aluminum alloy    surface modification    high-entropy alloy (HEA)    amorphous    nano-crystalline grain    anti-corrosion
    
ZTFLH:  TG115  
基金资助:* 国家自然科学基金项目51275220和51105179资助
作者简介: null

罗新民, 男, 1951年生, 教授

图1  激光冲击示意图
图2  7075-T76铝合金板原始组织的TEM像
图3  7075-T76铝合金经1和3次激光冲击后的SEM像
图4  7075-T76铝合金不同次数激光冲击后的硬度分布
图5  7075-T76铝合金单次激光冲击表面的TEM和HRTEM像
图6  7075-T76铝合金单次激光冲击表面中典型微区的微结构TEM像
图7  7075-T76铝合金激光冲击2次的TEM像
图8  7075-T76铝合金激光冲击3次后基体的HRTEM像
图9  7075-T76铝合金激光冲击3次后时效析出相中的形变孪晶的TEM和HRTEM像
图10  7075-T76 铝合金激光冲击样品腐蚀实验后的表面形貌
图11  7075-T76 铝合金腐蚀实验后的截面形貌
[1] Fairand B P, Wilcox B A, Gallagher W J. Appl Phys, 1972; 43: 3893
[2] Gomez R G, Rubio G C, Ocaña J L. Appl Surf Sci, 2010; 256: 5828
[3] Hatamleh O, Lyons J, Forman R. Int J Fatigue, 2007; 29: 421
[4] Lu J Z, Luo K Y, Zhang Y K, Cui C Y, Sun G F, Zhou J Z, Zhang L, You J, Chen K M, Zhong J W. Acta Mater, 2010; 58: 3984
[5] Wu B, Wang S B, Guo D H, Wu H X. Acta Opt Sin, 2005; 25: 1352
[5] (吴 边, 王声波, 郭大浩, 吴鸿兴. 光学学报, 2005; 25: 1352)
[6] Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, Chang S Y. Adv Eng Mater, 2004; 6: 299
[7] Zhang Y, Zuo T T, Tang Z, Gao M C, Dahmen K A, Liaw P K, Zhao P L. Prog Mater Sci, 2014; 61(4): 1
[8] Daniel B, Miracle J D, Miller O N, Senkov C W, Michael D U, Tiley J. Entropy, 2014; 16: 494
[9] Ren M X, Li B S, Fu H Z. Trans Nonferrous Met Soc China, 2013; 23: 991
[10] Sun H F. Master Thesis, Shandong University of Science and Technology, Jinan, 2009
[10] (孙宏飞. 山东科技大学硕士学位论文, 济南, 2009)
[11] Zhang H, Pan Y, He Y Z. Acta Metall Sin, 2011; 47: 1075
[11] (张 晖, 潘 冶, 何宜柱. 金属学报, 2011; 47: 1075)
[12] Chen M, Liu Y, Li Y X, Chen X. Acta Metall Sin, 2007; 43: 1020
[12] (陈 敏, 刘 源, 李言祥, 陈 祥. 金属学报, 2007; 43: 1020)
[13] Song C H, Gan Z H, Lu Z H, Chen H J, Huang F. J Mater Sci Eng, 2011; 29: 747
[13] (宋春晖, 甘章华, 卢志红, 陈汉杰, 黄 峰. 材料科学与工程学报, 2011; 29: 747)
[14] Zhou Y J, Zhang Y, Wang Y L, Chen G L. Rare Met Mater Eng, 2007; 36: 2136
[14] (周云军, 张 勇, 王艳丽, 陈国良. 稀有金属材料与工程, 2007; 36: 2136)
[15] Yu Y, Xie F Q, Zhang T B, Kou H C, Hu R, Li J S. Rare Met Mater Eng, 2012; 41: 862
[15] (于 源, 谢发勤, 张铁邦, 寇宏超, 胡 锐, 李金山. 稀有金属材料与工程, 2012; 41: 862)
[16] Liu S Q, Huang W G. Mater Eng, 2012; (1): 5
[16] (刘恕骞, 黄维刚. 材料工程, 2012; (1): 5)
[17] Zhang S, Wu C L, Wang C, Yi J Z, Zhang C H. Acta Metall Sin, 2014; 50: 555
[17] (张 松, 吴臣亮, 王 超, 伊俊振, 张春华. 金属学报, 2014; 50: 555 )
[18] Yue T M, Xie H, Lin X, Yang H O, Meng G H. Entropy, 2013; 15: 2833
[19] Zhang Y K, Xu X J, Luo Y, Song T, Wang H Y, Wu G C, Zhang Z Q. Rare Met Mater Eng, 2012; 41(Suppl 2): 612
[19] (张允康, 许晓静, 罗 勇, 宋 涛, 王宏宇, 吴桂潮, 张振强. 稀有金属材料与工程, 2012; 41(增刊2): 612)
[20] Ning A L, Liu Z Y, Feng C, Zeng S M. Acta Metall Sin, 2006; 42: 1253
[20] (宁爱林, 刘志义, 冯 春, 曾苏民. 金属学报, 2006; 42: 1253)
[21] Ren N F, Zhang Y K. Appl Laser, 1997; 17: 105
[21] (任乃飞, 张永康. 应用激光, 1997; 17: 105)
[22] Tian Y Q, Zhang H J, Chen L S, Song J Y, Xu Y, Zhang S H. Acta Metall Sin, 2014; 50: 531
[22] (田亚强, 张宏军, 陈连生, 宋进英, 徐 勇, 张士宏. 金属学报, 2014; 50: 531)
[23] Inoue A, Takauchi A. Mater Trans, 2002; 43: 1892
[24] Liang X B, Zhang Z B, Chen Y X, Xu B S. Acta Metall Sin, 2012; 48: 289
[24] (梁秀兵, 张志彬, 陈永雄, 徐滨士. 金属学报, 2012; 48: 289)
[25] Wang Z L. Master Thesis, Northeastern University, Shenyang, 2009
[25] (王志良. 东北大学硕士学位论文, 沈阳, 2009)
[26] Zhang J. J Chin Rare Earth Soc, 2006; 24(10): 40
[26] (张 鉴. 中国稀土学报, 2006; 24(10): 40)
[27] Lang Y J, Cui H, Cai Y H, Zhang J S. Chin J Mater Res, 2012; 26: 143
[27] (郎玉婧, 崔 华, 蔡元华, 张济山. 材料研究学报, 2012; 26: 143)
[28] Wang Y, Zhang W L, Sun D B, Li H Q. J Mater Sci Eng, 2006; 24: 292
[28] (王 玉, 张文礼, 孙冬柏, 李辉勤. 材料科学与工程学报, 2006; 24: 292)
[29] Zhu L F, Li Y C, Hu X Z, Dong J. Acta Mech Solid Sin, 2005; 26: 37
[29] (朱林法, 李永池, 胡秀章, 董 杰. 固体力学学报, 2005; 26: 37)
[30] Rosakis P, Rosakis A J, Ravichandran G, Hodowany J. J Mech Phys Solids, 2000; 48: 581
[31] Luo X M, Zhang J W, Ma H, Zhang Y K, Chen K M, Ren X D, Luo K Y. Acta Opt Sin, 2011; 31: 714002-1
[31] (罗新民, 张静文, 马 辉, 张永康, 陈康敏, 任旭东, 罗开玉. 光学学报, 2011; 31: 714002-1)
[32] Luo X M, Chen K M, Zhang J W, Lu J Z, Ren X D, Luo K Y, Zhang Y K. Acta Metall Sin, 2013; 49: 667
[32] (罗新民, 陈康敏, 张静文, 鲁金忠, 任旭东, 罗开玉, 张永康. 金属学报, 2013; 49: 667)
[33] Luo X M, Zhao G Z, Yang K, Chen K M, Zhang X N, Zhang Y K, Luo K Y, Ren X D. Chin J Lasers, 2011; 39: 0603001-1
[33] (罗新民, 赵广志, 杨 坤, 陈康敏, 张晓柠, 张永康, 罗开玉, 任旭东. 中国激光, 2011; 39: 0603001-1)
[34] Sui M L, Wang Y B, Cui J P, Li B Q. J Chin Electr Microsc Soc, 2010; 29: 219
[34] (隋曼龄, 王艳波, 崔静萍, 李白清. 电子显微学报, 2010; 29: 219)
[35] Wan C Y, Chen J H, Yang X B, Liu J Z, Wu C L, Zhao X Q. J Chin Electr Microsc Soc, 2010; 29: 455
[35] (万彩云, 陈江华, 杨修波, 刘吉梓, 伍翠兰, 赵新奇. 电子显微学报, 2010; 29: 455)
[1] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[2] 刘俊鹏, 陈浩, 张弛, 杨志刚, 张勇, 戴兰宏. 高熵合金的低温塑性变形机制及强韧化研究进展[J]. 金属学报, 2023, 59(6): 727-743.
[3] 黄鼎, 乔岩欣, 杨兰兰, 王金龙, 陈明辉, 朱圣龙, 王福会. 基体表面喷丸处理对纳米晶涂层循环氧化行为的影响[J]. 金属学报, 2023, 59(5): 668-678.
[4] 冯力, 王贵平, 马凯, 杨伟杰, 安国升, 李文生. 冷喷涂辅助感应重熔合成AlCo x CrFeNiCu高熵合金涂层的显微组织和性能[J]. 金属学报, 2023, 59(5): 703-712.
[5] 苗军伟, 王明亮, 张爱军, 卢一平, 王同敏, 李廷举. AlCr1.3TiNi2 共晶高熵合金的高温摩擦学性能及磨损机理[J]. 金属学报, 2023, 59(2): 267-276.
[6] 胡文滨, 张晓雯, 宋龙飞, 廖伯凯, 万闪, 康磊, 郭兴蓬. 共晶高熵合金AlCoCrFeNi2.1H2SO4 溶液中的腐蚀行为[J]. 金属学报, 2023, 59(12): 1644-1654.
[7] 高晗, 刘力, 周笑宇, 周心怡, 蔡汶君, 周泓伶. Ti6Al4V表面微纳结构的制备及生物活性[J]. 金属学报, 2023, 59(11): 1466-1474.
[8] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[9] 韩林至, 牟娟, 周永康, 朱正旺, 张海峰. 热处理温度对Ti0.5Zr1.5NbTa0.5Sn0.2 高熵合金组织结构与力学性能的影响[J]. 金属学报, 2022, 58(9): 1159-1168.
[10] 崔振铎, 朱家民, 姜辉, 吴水林, 朱胜利. Ti及钛合金表面改性在生物医用领域的研究进展[J]. 金属学报, 2022, 58(7): 837-856.
[11] 刘帅帅, 侯超楠, 王恩刚, 贾鹏. Zr61Cu25Al12Ti2Zr52.5Cu17.9Ni14.6Al10Ti5 块体非晶合金过冷液相区的塑性流变行为[J]. 金属学报, 2022, 58(6): 807-815.
[12] 李金富, 李伟. 铝基非晶合金的结构与非晶形成能力[J]. 金属学报, 2022, 58(4): 457-472.
[13] 赵晓峰, 李玲, 张晗, 陆杰. 热障涂层高熵合金粘结层材料研究进展[J]. 金属学报, 2022, 58(4): 503-512.
[14] 徐流杰, 宗乐, 罗春阳, 焦照临, 魏世忠. 难熔高熵合金的强韧化途径与调控机理[J]. 金属学报, 2022, 58(3): 257-271.
[15] 张金勇, 赵聪聪, 吴宜谨, 陈长玖, 陈正, 沈宝龙. (Fe0.33Co0.33Ni0.33)84 -x Cr8Mn8B x 高熵非晶合金薄带的结构特征及其晶化行为[J]. 金属学报, 2022, 58(2): 215-224.