Please wait a minute...
金属学报  2017, Vol. 53 Issue (10): 1303-1310    DOI: 10.11900/0412.1961.2017.00260
  研究论文 本期目录 | 过刊浏览 |
多孔Ta的制备及其作为骨植入材料的应用进展
赵德伟(), 李军雷
大连大学附属中山医院骨科医学研究中心 大连 116001
Fabrication of the Porous Tantalum and Its Current Status Used as Orthopedics Implants Materials
Dewei ZHAO(), Junlei LI
Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
引用本文:

赵德伟, 李军雷. 多孔Ta的制备及其作为骨植入材料的应用进展[J]. 金属学报, 2017, 53(10): 1303-1310.
Dewei ZHAO, Junlei LI. Fabrication of the Porous Tantalum and Its Current Status Used as Orthopedics Implants Materials[J]. Acta Metall Sin, 2017, 53(10): 1303-1310.

全文: PDF(3771 KB)   HTML
摘要: 

多孔Ta金属是近二十年发展起来的一种具有良好生物相容性、优异的综合力学特性的骨植入材料,具备弹性模量与骨组织相匹配、高摩擦系数提高植入体植入初期稳定性、诱导新生骨组织长入提高植入体长期稳定性等方面优势,在临床上获得广泛应用。本文从多孔Ta金属作为骨植入材料的应用背景、优势、制备方法、生物学性能以及临床应用情况等方面,阐述了多孔Ta金属作为骨植入材料的研究现状及最新动态,并对其发展前景进行了展望。

关键词 多孔Ta骨植入材料骨小梁金属    
Abstract

Porous tantalum (PT) is an orthopedics implant material that has been developed rapidly in recent decades. PT exhibits excellent biocompatibility, outstanding comprehensive mechanical properties, initial stability originated from their high friction factor and long term stability from their good osteoinduction, which make it widely applied in clinical practice. In this review, state of the arts and recent deve-lopment in the field of porous tantalum used as orthopedics implant material have been summarized and commented, which consist of introduction of its background, advantages, preparation approaches, biological performance and application status on clinic. The prospects are also described.

Key wordsporous tantalum    orthopedics implant material    trabecular metal
收稿日期: 2017-06-30     
ZTFLH:  R318.08  
基金资助:资助项目 国家科技支撑计划项目No.2012BAI17B02,国家重点研发计划项目No.2016YFC1102000,中国博士后科学基金项目No.171479及大连大学附属中山医院博士启动基金项目No.DLDXZSYY-DK201701
作者简介:

作者简介 赵德伟,男,1962年生,博士

图1  骨小梁金属(TM)和松质骨显微结构[8,9]
Bone tissue Fabrication Porosity Pore size Elastic Compression Compression Fatigue Ref.
method % μm modulus yield strength strength strength
GPa MPa MPa MPa
Cortical bone - 3~5 - 7~30 - 100~230 27~35 [1]
Cancellous - 50~90 - 0.01~3.0 - 2~12 - [1]
bone CVD (based on porous 75~85 400~600 1.5±0.4 35.3±6.5 49.7±6.6 35 [9]
carbon scaffold)
CVD (based on porous - - - - - - [17]
SiC scaffold)
Foam impregnation 59.4 300~500 1.73~2.72 35~51 50~73 - [15]
method
Addictive 79.7±0.2 500 1.22±0.07 12.7±0.6 28.3±1.2 7.35 [20]
manufacturing
Powder metallurgy - 100~400 2.0±0.3 - 50.3±0.5 - [21]
表1  骨组织与不同方法制备的多孔Ta金属的孔隙结构及力学性能对比[1,9,15,17,20,21]
图2  不同工艺方法制备的多孔Ta金属[9,16,17,20,21]
图3  化学气相沉积法(CVD)制备TM示意图
图4  泡沫浸渍法制备多孔Ta工艺流程图
图5  粉末冶金方法制备多孔Ta工艺流程图
图6  临床所使用的多孔Ta骨植入器件[7,31]
[1] Wang X J, Xu S Q, Zhou S W, et al.Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review[J]. Biomaterials, 2016, 83: 127
[2] Chen Q Z, Thouas G A.Metallic implant biomaterials[J]. Mater. Sci. Eng., 2015, R87: 1
[3] Lu R J, Liu H C.The progress of porous tantalum used as orthopaedic implants materials[J]. Chin. J. Geriat. Dent., 2013, 11: 173(路荣建, 刘洪臣. 多孔钽作为骨植入材料的研究进展[J]. 中华老年口腔医学杂志, 2013, 11: 173)
[4] Guo M, Zheng Y F.Manufacture technique and clinical application of porous tantalum implant in orthopaedic surgery[J]. Chin. Orthop. J. Clin. Basic Res., 2013, 5: 47(郭敏, 郑玉峰. 多孔钽材料制备及其骨科植入物临床应用现状[J]. 中国骨科临床与基础研究杂志, 2013, 5: 47)
[5] Fernandez-Fairen M, Querales V, Jakowlew A, et al.Tantalum is a good bone graft substitute in tibial tubercle advancement[J]. Clin. Orthop. Relat. Res., 2010, 468: 1284
[6] Kim D G, Huja S S, Tee B C, et al.Bone ingrowth and initial stability of titanium and porous tantalum dental implants: A pilot canine study[J]. Implant Dent., 2013, 22: 399
[7] Wegrzyn J, Kaufman K R, Hanssen A D, et al.Performance of porous tantalum vs. titanium cup in total hip arthroplasty: Randomized trial with minimum 10-year follow-up[J]. J. Arthroplasty, 2015, 30: 1008
[8] Ruan D, Lu G, Chen F L, et al.Compressive behaviour of aluminium foams at low and medium strain rates[J]. Compos. Struct., 2002, 57: 331
[9] Zardiackas L D, Parsell D E, Dillon L D, et al.Structure, metallurgy, and mechanical properties of a porous tantalum foam[J]. J. Biomed. Mater. Res., 2001, 58A: 180
[10] Stiehler M, Lind M, Mygind T, et al.Morphology, proliferation, and osteogenic differentiation of mesenchymal stem cells cultured on titanium, tantalum, and chromium surfaces[J]. J. Biomed. Mater. Res., 2008, 86A: 448
[11] Balla V K, Banerjee S, Bose S, et al.Direct laser processing of a tantalum coating on titanium for bone replacement structures[J]. Acta Biomater., 2010, 6: 2329
[12] Bobyn J D, Stackpool G J, Hacking S A, et al.Characteristics of bone ingrowth and interface mechanics of a new porous tantalum biomaterial[J]. J. Bone Joint Surg. Br., 1999, 81: 907
[13] Hacking S A, Bobyn J D, Toh K, et al.Fibrous tissue ingrowth and attachment to porous tantalum[J]. J. Biomed. Mater. Res., 2000, 52A: 631
[14] Li J P, Li S H, Van Blitterswijk C A, et al. A novel porous Ti6Al4V: Characterization and cell attachment[J]. J. Biomed. Mater. Res., 2005, 73A: 223
[15] Jie Y F.Research on preparation, technology and properties of porous Tantalum [D]. Changsha: Central South University, 2011(节云峰. 多孔钽的制备及其工艺和性能的研究 [D]. 长沙: 中南大学, 2011)
[16] Kaplan R B.Open cell tantalum structures for cancellous bone, implants and cell and tissue receptors [P]. US Pat, 5282861, 1994
[17] Ma Z J, Xie H, Wang B J, et al.A novel tantalum coating on porous SiC used for bone filling material[J]. Mater. Lett., 2016, 179: 166
[18] Wei X W, Zhao D W, Wang B J, et al.Tantalum coating of porous carbon scaffold supplemented with autologous bone marrow stromal stem cells for bone regeneration in vitro and in vivo[J]. Exp. Biol. Med., 2016, 241: 592
[19] Wang J, Li J, Yang H L, et al.Fabrication of trabecular metal via impregnation and its properties[J]. J. Central South Univ.(Sci. Technol.), 2012, 43: 1684(王军, 李婧, 杨海林等. 泡沫浸渍法制备小梁金属及性能[J]. 中南大学学报(自然科学版), 2012, 43: 1684)
[20] Wauthle R, van der Stok J, Amin Yavari S, et al. Additively manufactured porous tantalum implants[J]. Acta Biomater., 2015, 14: 217
[21] Zhou Y S, Zhu Y C.Three-dimensional Ta foams produced by replication of NaCl space-holders[J]. Mater. Lett., 2013, 99: 8
[22] Balla V K, Bodhak S, Bose S, et al.Porous tantalum structures for bone implants: Fabrication, mechanical and in vitro biological properties[J]. Acta Biomater., 2010, 6: 3349
[23] Jia J G, Siddiq A R, Kennedy A R.Porous titanium manufactured by a novel powder tapping method using spherical salt bead space holders: Characterisation and mechanical properties[J]. J. Mech. Behav. Biomed. Mater., 2015, 48: 229
[24] Esen Z, Bor ?.Processing of titanium foams using magnesium spacer particles[J]. Scr. Mater., 2007, 56: 341
[25] Jha N, Mondal D P, Dutta Majumdar J, et al.Highly porous open cell Ti-foam using NaCl as temporary space holder through powder metallurgy route[J]. Mater. Des., 2013, 47: 810
[26] Dabrowski B, Swieszkowski W, Godlinski D, et al.Highly porous titanium scaffolds for orthopaedic applications[J]. J. Biomed. Mater. Res.: Appl. Biomater., 2010, 95B: 53
[27] Sagomonyants K B, Hakim-Zargar M, Jhaveri A, et al.Porous tantalum stimulates the proliferation and osteogenesis of osteoblasts from elderly female patients[J]. J. Orthop. Res., 2011, 29: 609
[28] Tang Z, Xie Y T, Yang F, et al.Porous tantalum coatings prepared by vacuum plasma spraying enhance bmscs osteogenic differentiation and bone regeneration in vitro and in vivo[J]. PLoS One, 2013, 8: e66263
[29] Wang Q, Qiao Y Q, Cheng M Q, et al.Tantalum implanted entangled porous titanium promotes surface osseointegration and bone ingrowth[J]. Sci. Rep., 2016, 6: 26248
[30] Lu T, Wen J, Qian S, et al.Enhanced osteointegration on tantalum-implanted polyetheretherketone surface with bone-like elastic modulus[J]. Biomaterials, 2015, 51: 173
[31] Levine B R, Sporer S, Poggie R A, et al.Experimental and clinical performance of porous tantalum in orthopedic surgery[J]. Biomaterials, 2006, 27: 4671
[32] Ries M D, Cabalo A, Bozic K J, et al.Porous tantalum patellar augmentation: The importance of residual bone stock[J]. Clin. Orthop. Relat. Res., 2006, 452: 166
[33] Zhang Y, Li L, Shi Z J, et al.Porous tantalum rod implant is an effective and safe choice for early-stage femoral head necrosis: A meta-analysis of clinical trials[J]. Eur. J. Orthop. Surg. Traumatol., 2013, 23: 211
[34] Fernández-Fairen M, Murcia A, Torres A, et al.Is anterior cervical fusion with a porous tantalum implant a cost-effective method to treat cervical disc disease with radiculopathy?[J]. Spine, 2012, 37: 1734
[35] Kanczler J M, Oreffo R O C. Osteogenesis and angiogenesis: The potential for engineering bone[J]. Eur. Cell Mater., 2008, 15: 100
[36] Eriksen S, Gillesberg B, Langmaack L N, et al.Tantalum coated carbon-carbon composite material for surgical implants [A]. Medical Device Materialsv II: Proceedings from the Materials & Processes for Medical Device Conference 2004[C]. Minnesota, 2005: 241
[37] Zhao D W, Wang B J, Xie H, et al.Fracture is fixed with porous tantalum metal screw [P]. Chin Pat, ZL201620406230.2. 2016(赵德伟, 王本杰, 谢辉等. 一种骨折固定用多孔钽金属螺钉 [P]. 中国专利, 201620406230.2, 2016)
[38] Zhao D W, Qiu X, Wang B J, et al.Epiphyseal arterial network and inferior retinacular artery seem critical to femoral head perfusion in adults with femoral neck fractures[J]. Clin. Orthop. Relat. Res., 2017, 475: 2011
[1] 郑玉峰, 夏丹丹, 谌雨农, 刘云松, 徐钰倩, 温鹏, 田耘, 赖毓霄. 增材制造可降解金属医用植入物[J]. 金属学报, 2021, 57(11): 1499-1520.
[2] 马政, 陆喜, 高明, 谭丽丽, 杨柯. 缝隙腐蚀对Fe-30Mn-1C合金降解速率的影响[J]. 金属学报, 2018, 54(7): 1010-1018.
[3] 彭聪, 张书源, 任玲, 杨柯. 冷却速率对含Cu钛合金显微组织和性能的影响[J]. 金属学报, 2017, 53(10): 1377-1384.
[4] 于振涛, 余森, 程军, 麻西群. 新型医用钛合金材料的研发和应用现状[J]. 金属学报, 2017, 53(10): 1238-1264.
[5] 谭丽丽, 陈军修, 于晓明, 杨柯. 生物可降解MgYREZr合金的研究进展[J]. 金属学报, 2017, 53(10): 1207-1214.
[6] 任伊宾, 李俊, 王青川, 杨柯. MRI磁兼容合金研究[J]. 金属学报, 2017, 53(10): 1323-1330.
[7] 赵颖, 曾利兰, 梁涛. 可降解镁基金属的生物相容性研究进展[J]. 金属学报, 2017, 53(10): 1181-1196.
[8] 林潇, 葛隽, 吴水林, 刘宝华, 杨惠林, 杨磊. 兼具成骨和抗感染性能的医用金属材料研究进展[J]. 金属学报, 2017, 53(10): 1284-1302.
[9] 李慕勤, 姚海涛, 魏方红, 刘明达, 王赞, 彭书浩. 医用纯Mg表面多种复合处理膜层的组织结构和体内外性能[J]. 金属学报, 2017, 53(10): 1337-1346.
[10] 东家慧, 谭丽丽, 杨柯. 可降解镁基金属骨缺损修复材料的研究探索[J]. 金属学报, 2017, 53(10): 1197-1206.
[11] 奚廷斐, 魏利娜, 刘婧, 刘小丽, 甄珍, 郑玉峰. 镁合金全降解血管支架研究进展[J]. 金属学报, 2017, 53(10): 1153-1167.
[12] 任伊宾, 赵浩川, 杨柯. 高氮无镍不锈钢接骨板的轻量化设计及生物力学研究:厚度减薄的影响[J]. 金属学报, 2017, 53(10): 1331-1336.
[13] 郑玉峰, 杨宏韬. 血管支架用可降解金属研究进展[J]. 金属学报, 2017, 53(10): 1227-1237.
[14] 洪岩松; 杨柯; 张广道; 黄晶晶; 郝玉全; 艾红军 . 可降解镁合金的动物体内骨诱导作用[J]. 金属学报, 2008, 44(9): 1035-1041 .
[15] 桂林; 钟云波; 傅小明; 雷作胜; 任忠鸣 . 强磁场下共沉淀-相转化法制备纳米钴铁氧体颗粒[J]. 金属学报, 2007, 43(5): 529-533 .