Please wait a minute...
金属学报  2017, Vol. 53 Issue (10): 1207-1214    DOI: 10.11900/0412.1961.2017.00266
  研究论文 本期目录 | 过刊浏览 |
生物可降解MgYREZr合金的研究进展
谭丽丽1(), 陈军修1,2, 于晓明1, 杨柯1
1 中国科学院金属研究所 沈阳 110016
2 中国科学技术大学材料科学与工程学院 沈阳 110016
Recent Advances on Biodegradable MgYREZrMagnesium Alloy
Lili TAN1(), Junxiu CHEN1,2, Xiaoming YU1, Ke YANG1
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

谭丽丽, 陈军修, 于晓明, 杨柯. 生物可降解MgYREZr合金的研究进展[J]. 金属学报, 2017, 53(10): 1207-1214.
Lili TAN, Junxiu CHEN, Xiaoming YU, Ke YANG. Recent Advances on Biodegradable MgYREZrMagnesium Alloy[J]. Acta Metall Sin, 2017, 53(10): 1207-1214.

全文: PDF(4089 KB)   HTML
摘要: 

近年来医用可降解镁合金在生物医用材料领域备受关注,其中以WE43为代表的MgYREZr合金以优异的综合性能受到研究者的青睐。本文综述了WE43合金的组织结构、力学性能、降解性能和生物相容性的研究进展,以及德国采用近似于WE43成分的MgYREZr合金制备的可降解镁合金骨钉所进行的临床实验结果。MgYREZr合金由于RE元素的存在,组织均匀,经过大塑性变形可获得尺寸<1 μm的晶粒,具有较高的抗拉强度、屈服强度及延伸率等力学性能;合金中的RE元素可以稳定腐蚀层,通过合理的热处理制度可以显著降低合金的降解速率。动物实验表明,合金具有良好的生物相容性及高的生物活性;临床实验显示,MgYREZr合金螺钉在治疗踇外翻的手术中具有与钛合金螺钉相同的治疗效果,而在腕舟骨骨折固定术中却发现了螺钉周围的骨溶解现象,导致病人的开始活动时间延至半年后。MgYREZr合金作为内植入物材料具有良好的综合力学性能和较高的耐蚀性,然而,针对不同的临床适应症,MgYREZr合金所制备器件的降解行为、生物学行为等还需要大量的体内外实验研究;进一步控制MgYREZr螺钉的降解速率以适应不同的临床需求,依然是其拓展临床应用范围所面临的主要问题。

关键词 MgYREZr合金组织结构力学性能降解性能生物相容性    
Abstract

In recent years, magnesium and its alloys as biodegradable materials have attracted much attention. Biodegradable MgYREZr, mainly WE43 alloy, with good integrated properties has been studied in favor. In this paper, the microstructure, mechanical properties, biodegradable property and biocompatibility of biodegradable MgYREZr alloy were reviewed, as well as the clinical results of the bone fixation screws developed in Germany using the alloy with similar composition to WE43. MgYREZr alloy presents uniform microstructure and higher mechanical properties after large plastic deformation with the grain size of less than 1 μm. The RE elements can be dissolved and stabilize the corrosion layer, which can decrease the degradation rate of the alloy accompanying with optimized heat treatment. The animal tests showed biocompatibility and good bioactivity. Clinical tests showed the MgYREZr alloy screws presented equivalent to titanium screws for the treatment of mild hallux valgus deformities, however resorption cysts was revealed by X-rays when the acute scaphoid fractures were treated with a double-threaded screw made of MgYREZr, and it was only after 6 months that the fractures were consolidated enough to allow physical work. So for different clinical cases, the degradation and biological behaviors of MgYREZr alloys need to be further studied in vitro and in vivo. To control the degradation rates to meet the different clinical requirements is still a major obstacle for biodegradable MgYREZr alloys to enlarge their clinical application.

Key wordsMgYREZr alloy    microstructure    mechanical property    biodegradable property    biocompatibility
收稿日期: 2017-07-03     
ZTFLH:  R318.08  
基金资助:国家自然科学基金项目Nos.81401773和31500777
作者简介:

作者简介 谭丽丽,女,1977年生,研究员,博士

Alloy Y Nd RE Zr Cu Fe Li Mn Ni Si Zn Others Mg
WE43A 3.7~4.3 2.0~2.5 1.9a 0.4~1.0 0.03 0.01 0.2 0.15 0.005 0.01 0.2 0.20 Bal.
WE43B 3.7~4.3 2.0~2.5 1.9a 0.4~1.0 0.03 0.01 0.2 0.03 0.005 - <0.2b 0.01 Bal.
表1  ASTM B80.21866标准中的WE43A和WE43B合金的化学成分
图1  铸态和挤压态WE43镁合金的微观结构[19]
图2  不同形状的镁合金螺钉从人造骨中拔出时的最大拔出力(对照为商业用的高分子螺钉)[23]
图3  具有不同螺纹形状的螺钉[23]
Material Ultimate tensile Yield strength Elongation
strength / MPa MPa %
Cortical bone 35~283 - 1.07~2.10
WE43A-T6 250 162 2
WE43B 220 - 2
WE43 extruded 277 198 17
WE43 tube 260 170 25
表2  WE43镁合金及皮质骨的力学性能[20]
图4  失重法得出的纯Mg和WE43合金在不同状态的Hank's 溶液中的腐蚀速率[26]
图5  经过不同时效处理时间Zr在Mg-Y-RE-Zr合金中的分布示意图[27]
图6  WE43合金在模拟体液中发生局部腐蚀的机理示意图[13]
图7  4种镁合金植入豚鼠股骨6和18周后股骨与镁合金接触处骨的矿化区域[28]
图8  镁合金螺钉植入4、12和24周后螺钉与周围组织的计算机断层成像[31]
图9  植入4、12和24周后血液中Y和Zr的含量[31]
图10  2种相同规格的钛合金螺钉和镁合金的螺钉[15]
图11  镁合金和钛合金植入治愈情况[15]
图12  植入镁合金1 a后的临床治疗效果[33]
[1] Staiger M P, Pietak A M, Huadmai J, et al.Magnesium and its alloys as orthopedic biomaterials: A review[J]. Biomaterials, 2006, 27: 1728
[2] Zhang W J, Li M H, Chen Q, et al.Effects of Sr and Sn on microstructure and corrosion resistance of Mg-Zr-Ca magnesium alloy for biomedical applications[J]. Mater. Des., 2012, 39: 379
[3] Witte F, Fischer J, Nellesen J, et al.In vitro and in vivo corrosion measurements of magnesium alloys[J]. Biomaterials, 2006, 27: 1013
[4] Song G L.Control of biodegradation of biocompatable magnesium alloys[J]. Corros. Sci., 2007, 49: 1696
[5] Kraus T, Fischerauer S F, H?nzi A C, et al.Magnesium alloys for temporary implants in osteosynthesis: In vivo studies of their degradation and interaction with bone[J]. Acta Biomater., 2012, 8: 1230
[6] Zhou P, Gong H R.Phase stability, mechanical property, and electronic structure of an Mg-Ca system[J]. J. Mech. Behav. Biomed. Mater., 2012, 8: 154
[7] Jin W H, Wu G S, Feng H Q, et al.Improvement of corrosion resistance and biocompatibility of rare-earth WE43 magnesium alloy by neodymium self-ion implantation[J]. Corros. Sci., 2015, 94: 142
[8] Zong Y, Yuan G Y, Zhang X B, et al.Comparison of biodegradable behaviors of AZ31 and Mg-Nd-Zn-Zr alloys in Hank's physiological solution[J]. Mater. Sci. Eng., 2012, B177: 395
[9] Zhang J Y, Kang Z X, Wang F.Mechanical properties and biocorrosion resistance of the Mg-Gd-Nd-Zn-Zr alloy processed by equal channel angular pressing[J]. Mater. Sci. Eng., 2016, C68: 194
[10] Mao L, Shen L, Chen J H, et al.Enhanced bioactivity of Mg-Nd-Zn-Zr alloy achieved with nanoscale MgF2 surface for vascular stent application[J]. ACS Appl. Mater. Interfaces, 2015, 7: 5320
[11] Zhao D W, Huang S B, Lu F Q, et al.Vascularized bone grafting fixed by biodegradable magnesium screw for treating osteonecrosis of the femoral head[J]. Biomaterials, 2016, 81: 84
[12] Lee J W Han H S, Han K J, et al. Long-term clinical study and multiscale analysis of in vivo biodegradation mechanism of Mg alloy[J]. Proc. Natl. Acad. Sci. USA, 2016, 113: 716
[13] Kalb H, Rzany A, Hensel B.Impact of microgalvanic corrosion on the degradation morphology of WE43 and pure magnesium under exposure to simulated body fluid[J]. Corros. Sci., 2012, 57: 122
[14] Xu H, Liu J A, Xie S S.Magnesium Alloy Fabrication and Processing Technology [M]. Beijing: Metallurgical Industry Press, 2007: 64(徐河, 刘静安, 谢水生. 镁合金制备与加工技术 [M]. 北京: 冶金工业出版社, 2007: 64)
[15] Windhagen H, Radtke K, Weizbauer A, et al.Biodegradable magnesium-based screw clinically equivalent to titanium screw in hallux valgus surgery: Short term results of the first prospective, randomized, controlled clinical pilot study[J]. Biomed. Eng. Online, 2013, 12: 62
[16] Rzychoń T, Kie?bus A.Microstructure of WE-43 casting magnesium alloys[J]. J. Achiev. Mater. Manuf. Eng., 2007, 21: 31
[17] Nie J F, Muddle B C.Precipitation in magnesium alloy WE54 during isothermal ageing at 250 ℃[J]. Scr. Mater., 1999, 40: 1089
[18] Apps P J, Karimzadeh H, King J F, et al.Phase compositions in magnesium-rare earth alloys containing yttrium, gadolinium or dysprosium[J]. Scr. Mater., 2003, 48: 475
[19] Hornberger H, Witte F, Hort N, et al.Effect of fetal calf serum on the corrosion behaviour of magnesium alloys[J]. Mater. Sci. Eng., 2011, B176: 1746
[20] Witte F, Hort N, Vogt C, et al.Degradable biomaterials based on magnesium corrosion[J]. Curr. Opin. Solid State Mater. Sci., 2008, 12: 63
[21] Kutniy K V, Papirov I I, Tikhonovsky M A, et al.Influence of grain size on mechanical and corrosion properties of magnesium alloy for medical implants[J]. Materialwiss. Werkstofftech., 2009, 40: 242
[22] Gu X N, Zhou W R, Zheng Y F, et al.Corrosion fatigue behaviors of two biomedical Mg alloys-AZ91D and WE43-In simulated body fluid[J]. Acta Biomater., 2010, 6: 4605
[23] Ezechieli M, Ettinger M, K?nig C, et al.Biomechanical characteristics of bioabsorbable magnesium-based (MgYREZr-alloy) interference screws with different threads[J]. Knee Surg. Sports Traumatol., 2014, 24: 3976
[24] Ascencio M, Pekguleryuz M, Omanovic S.An investigation of the corrosion mechanisms of WE43 Mg alloy in a modified simulated body fluid solution: The influence of immersion time[J]. Corrosion Sci., 2014, 87: 489
[25] Zhou X H, Jiang L, Wu P P, et al.Effect of aggressive ions on degradation of WE43 magnesium alloy in physiological environment[J]. Int. J. Electrochem. Sci., 2014, 9: 304
[26] Li N, Guo C, Wu Y H, et al.Comparative study on corrosion behaviour of pure Mg and WE43 alloy in static, stirring and flowing Hank's solution[J]. Corros. Eng. Sci. Technol., 2013, 47: 346
[27] Ben-Hamu G, Eliezer D, Shin K S, et al.The relation between microstructure and corrosion behavior of Mg-Y-RE-Zr alloys[J]. J. Alloys Compd., 2007, 431: 269
[28] Witte F, Kaese V, Haferkamp H, et al.In vivo corrosion of four magnesium alloys and the associated bone response[J]. Biomaterials, 2005, 26: 3557
[29] Witte F, Abeln I, Switzer E, et al.Evaluation of the skin sensitizing potential of biodegradable magnesium alloys[J]. J. Biomed. Mater. Res., 2008, 86A: 1041
[30] Waizy H, Diekmann J, Weizbauer A, et al.In vivo study of a biodegradable orthopedic screw (MgYREZr-alloy) in a rabbit model for up to 12 months[J]. J. Biomater. Appl., 2013, 28: 667
[31] Diekmann J, Bauer S, Weizbauer A, et al.Examination of a biodegradable magnesium screw for the reconstruction of the anterior cruciate ligament: A pilot in vivo study in rabbits[J]. Mater. Sci. Eng., 2016, C59: 1100
[32] Herbert T J, Fisher W E, Leicester A W.The Herbert bone screw: A ten year perspective[J]. J. Hand Surg., 1992, 17: 415
[33] Biber R, Pauser J, Ge?lein M, et al.Magnesium-based absorbable metal screws for intra-articular fracture fixation[J]. Case Rep. Orthop., 2016, 2016: 9673174
[34] Meier R, Panzica M.First results with a resorbable MgYREZr compression screw in unstable scaphoid fractures show extensive bone cysts[J]. Handchir. Mikrochir. Plast. Chir., 2017, 49: 37
[35] Plaass C, Ettinger S, Sonnow L, et al.Early results using a biodegradable magnesium screw for modified chevron osteotomies[J]. J. Orthop. Res., 2016, 34: 2207
[1] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[10] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[11] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[12] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[13] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[14] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[15] 王鲁宁, 尹玉霞, 石章智, 韩倩倩. 医用可降解锌合金的生物相容性评价研究进展[J]. 金属学报, 2023, 59(3): 319-334.