Please wait a minute...
金属学报  2016, Vol. 52 Issue (8): 897-904    DOI: 10.11900/0412.1961.2015.00631
  论文 本期目录 | 过刊浏览 |
镍基高温合金定向凝固过程中的汇聚型双晶竞争生长*
胡松松,刘林(),崔强伟,黄太文,张军,傅恒志
西北工业大学凝固技术国家重点实验室, 西安 710072
CONVERGING COMPETITIVE GROWTH IN BI-CRYSTAL OF Ni-BASED SUPERALLOY DURINGDIRECTIONAL SOLIDIFICATION
Songsong HU,Lin LIU(),Qiangwei CUI,Taiwen HUANG,Jun ZHANG,Hengzhi FU
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
引用本文:

胡松松,刘林,崔强伟,黄太文,张军,傅恒志. 镍基高温合金定向凝固过程中的汇聚型双晶竞争生长*[J]. 金属学报, 2016, 52(8): 897-904.
Songsong HU, Lin LIU, Qiangwei CUI, Taiwen HUANG, Jun ZHANG, Hengzhi FU. CONVERGING COMPETITIVE GROWTH IN BI-CRYSTAL OF Ni-BASED SUPERALLOY DURINGDIRECTIONAL SOLIDIFICATION[J]. Acta Metall Sin, 2016, 52(8): 897-904.

全文: PDF(1516 KB)   HTML
  
摘要: 

采用籽晶法控制晶体取向, 研究了不同抽拉速率下镍基高温合金汇聚型双晶的竞争生长. 结果表明, 低抽拉速率下, 非择优枝晶能够穿插进入择优枝晶间的液相通道, 抑制择优枝晶的生长, 使晶界向择优晶粒方向偏移. 高抽拉速率下, 非择优枝晶几乎全部被晶界择优枝晶阻挡, 晶界与择优枝晶干平行. 非择优枝晶进入择优枝晶间的液相通道使择优枝晶萎缩消失是非择优晶粒淘汰择优晶粒的主要因素, 并以此提出了抽拉速率对竞争生长的影响机制.

关键词 镍基高温合金竞争生长抽拉速率    
Abstract

Ni-based single crystal superalloy has been widely used in turbine blades due to its excellent high temperature mechanical behavior. In order to completely exhibit high temperature mechanical properties, the seed method has been used to produce Ni-based single crystal components for [001] orientation paralleling to main force direction. Stray crystals, which unexpectedly nucleate in the melt-back region, will competitively grow with seed during directional solidification. It is important to profoundly understand the mechanism of competitive growth to find ways of overgrowing stray crystal during producing Ni-based single crystal components. However, within the published research there are conflicting views on the mechanism of competitive growth at converging case. Bi-crystal converging competitive growth was investigated in Ni-based single crystal superalloy with different pulling rates using seed technology. A series of polishing and imaging quenching interface were done for the positional relationship of dendrites near grain boundary in 3D reference. It was found that solidification microstruc tures were different with different crystal orientations. Unfavorable oriented dendrite tilting to heat flux restrained favorable oriented dendrite aligning to heat flux mainly thought inserting into the favorable oriented dendrites channel, and this resulted in unfavorable oriented dendrite overgrowing favorable oriented dendrite at low pulling rate. However, at high pulling rate the unfavorable oriented dendrites mainly blocked by grain boundary favorable oriented dendrite and the grain boundary grew paralleling to favorable oriented dendrite core. Favorable oriented dendrite being depressed and vanished, owning to that unfavorable oriented dendrite inserting into favorable oriented dendrites channel result in adjusting primary dendrite spacing, is the main factor to favorable oriented grain overgrew by unfavorable oriented grain. According to above mechanism, effect of pulling rate on competitive growth at converging case was interpreted. This could broaden our understanding of competitive growth at converging case in 3D reference.

Key wordsNi-based superalloy    competitive growth    pulling rate
收稿日期: 2015-12-07     
基金资助:* 国家自然科学基金项目51331005, 51171151和51501151, 国家高技术研究发展计划项目2012AA03A511, 国家重点基础研究发展计划项目2011CB610406, 陕西省自然科学基金项目2014JM6227, 西北工业大学基础研究基金项目3102014JCQ01022及先进航空发动机协同创新中心项目资助
图1  双籽晶放置示意图
图2  抽拉速率为50 μm/s时不同取向镍基单晶高温合金横截面和纵截面的OM像
图3  抽拉速率对枝晶间距的影响
图4  不同凝固距离和抽拉速率下镍基双晶高温合金凝固组织横截面的OM像
图5  抽拉速率为50 μm/s时层磨法获得的镍基高温合金淬火界面OM像
图6  抽拉速率为100 μm/s时层磨法获得的镍基高温合金淬火界面OM像
图7  抽拉速率对竞争生长的影响
图8  晶界枝晶位置关系示意图
[1] Harris K, Erickson G L, Schwer R E. Metals Handbook.10th Ed., Vol.1, Ohio: ASM International, 1990: 995
[2] D'Souza N, Newell M, Devendra K, Jennings P A, Ardakani M G, Shollock B A.Mater Sci Eng, 2005; A413: 567
[3] Yang X L, Lee P D, D'Souza N.JOM, 2005; 57(5): 40
[4] Stanford N, Djakovic A, Shollock B A, Mclean M, D'Souza N, Jennings P A.Scr Mater, 2004; 50: 159
[5] Aveson J W, Tennant P A, Foss B J, Shollock B A, Stone H J, D'Souza N.Acta Mater, 2013; 61: 5162
[6] Walton D, Chalmers B.Trans Metall Soc AIME, 1959; 215: 447
[7] Wagner A, Shollock B A, McLean M.Mater Sci Eng, 2004; A374: 207
[8] Zhou Y Z, Volek A, Green N R.Acta Mater, 2008; 56: 2631
[9] Yu H L, Lin X, Li J J, Wang L L, Huang W D.Acta Metall Sin, 2013; 49: 58
[9] (宇红雷, 林鑫, 李俊杰, 王理林, 黄卫东. 金属学报, 2013; 49: 58)
[10] Liu Z Y, Lin M, Yu D E, Zhou X W, Gu Y X, Fu H Z.Metall Mater Tran, 2013; 44A: 5113
[11] Zhang H, Xu Q Y, Sun C B, Qi X, Tang N, Liu B C.Acta Metall Sin, 2013; 49: 1521
[11] (张航, 许庆彦, 孙长波, 戚翔, 唐宁, 刘百成. 金属学报, 2013; 49: 1521)
[12] Rappaz M, Gandin C A, Desbiolles J L, Thevoz P.Metall Mater Trans, 1996; 27A: 695
[13] Rappaz M, Gandin C A.Acta Metall, 1994; 42: 2233
[14] Zhou Y Z, Jin T, Sun X F.Acta Metall Sin, 2010; 46: 1327
[14] (周亦胄, 金涛, 孙晓峰. 金属学报, 2010; 46: 1327)
[15] Li J J, Wang Z J, Wang Y Q, Wang J C.Acta Mater, 2012; 60: 1478
[16] Yang C B, Liu L, Zhao X B, Wang N, Zhang J, Fu H Z.J Alloys Compd, 2013; 578: 557
[17] Zhang X L.PhD Dissertation, University of Chinese Academy of Sciences, Beijing, 2013
[17] (张小丽. 中国科学院大学博士学位论文 ,北京, 2013)
[18] Takaki T, Ohno M, Shibuta Y, Sakane S, Shimokawabe T.J Cryst Growth, 2016; 442: 14
[19] Takaki T, Ohno M, Shimokawabe T, Aoki T.Acta Mater, 2014; 81: 272
[20] Yu H L, Li J J, Lin X, Wang L L, Huang W D.J Cryst Growth, 2014; 402: 210
[21] Zhou Y Z, Sun X F.Sci China Tech Sci, 2012; 55: 1327
[22] Meng X B, Lu Q, Zhang X L, Li J T, Chen Z Q, Wang Y H, Zhou Y Z, Jin T, Sun X F, Hu Z Q.Acta Mater, 2012; 60: 3965
[23] Lu Q, Li J G, Jin T, Zhou Y Z, Sun X F, Hu Z Q.Acta Metall Sin, 2011; 47: 641
[23] (卢琦, 李金国, 金涛, 周亦胄, 孙晓峰, 胡壮麒. 金属学报, 2011; 47: 641)
[24] Sakae S, Takaki T, Ohno M, Shimokawabe T, Aoki T.In: IOP Conference Series: Materials Science and Engineering, 2015; 84: 012063
[25] Han S H, Trivedi R.Acta Metall Mater, 1994; 42: 25
[26] Fu H Z, Guo J J, Liu L, Li J S.Directional Solidification and Processing of Advanced Materials. Beijing: Science Press, 2008: 267
[26] (傅恒志, 郭景杰, 刘林, 李金国. 先进材料定向凝固. 北京: 科学出版社, 2008: 267)
[1] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[2] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[4] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[5] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[6] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[7] 刘来娣, 丁彪, 任维丽, 钟云波, 王晖, 王秋良. DZ445镍基高温合金高温长时间氧化形成的多层膜结构[J]. 金属学报, 2023, 59(3): 387-398.
[8] 于少霞, 王麒, 邓想涛, 王昭东. GH3600镍基高温合金极薄带的制备及尺寸效应[J]. 金属学报, 2023, 59(10): 1365-1375.
[9] 祝国梁, 孔德成, 周文哲, 贺戬, 董安平, 疏达, 孙宝德. 选区激光熔化 γ' 相强化镍基高温合金裂纹形成机理与抗裂纹设计研究进展[J]. 金属学报, 2023, 59(1): 16-30.
[10] 朱玉平, 盛乃成, 谢君, 王振江, 荀淑玲, 于金江, 李金国, 杨林, 侯桂臣, 周亦胄, 孙晓峰. 高钨镍基高温合金K416BW相的析出行为[J]. 金属学报, 2021, 57(2): 215-223.
[11] 刘超, 姚志浩, 江河, 董建新. GH4720Li合金毫米级粗大晶粒热变形获得均匀等轴晶粒的可行性及工艺控制[J]. 金属学报, 2021, 57(10): 1309-1319.
[12] 张小丽, 冯丽, 杨彦红, 周亦胄, 刘贵群. 二次枝晶取向对镍基高温合金晶粒竞争生长行为的影响[J]. 金属学报, 2020, 56(7): 969-978.
[13] 张北江,黄烁,张文云,田强,陈石富. 变形高温合金盘材及其制备技术研究进展[J]. 金属学报, 2019, 55(9): 1095-1114.
[14] 王锦程, 郭春文, 李俊杰, 王志军. 定向凝固晶粒竞争生长的研究进展[J]. 金属学报, 2018, 54(5): 657-668.
[15] 任维鹏, 李青, 黄强, 肖程波, 何利民. 定向凝固镍基高温合金DZ466表面CoAl涂层的氧化及组织演变[J]. 金属学报, 2018, 54(4): 566-574.