Please wait a minute...
金属学报  2019, Vol. 55 Issue (9): 1095-1114    DOI: 10.11900/0412.1961.2019.00078
  综述 本期目录 | 过刊浏览 |
变形高温合金盘材及其制备技术研究进展
张北江(),黄烁,张文云,田强,陈石富
钢铁研究总院高温材料研究所 北京 100081
Recent Development of Nickel-Based Disc Alloys andCorresponding Cast-Wrought Processing Techniques
ZHANG Beijiang(),HUANG Shuo,ZHANG Wenyun,TIAN Qiang,CHEN Shifu
High Temperature Materials Research Division, Central Iron & Steel Research Institute, Beijing 100081, China
全文: PDF(51115 KB)   HTML
摘要: 

近年来一系列新型的高性能变形高温合金盘材在航空发动机和燃气轮机上获得了重要应用,这些盘材合金在追求高承温能力的同时更加注重服役性能、工艺性能与全寿命成本之间的平衡。国内在三联熔铸直径508 mm自耗锭、多重循环热机械处理制备直径300 mm以上细晶棒材、盘件热模锻成型与组织性能控制等关键制备技术取得突破的基础上,成功研制了GH4065、GH4720、GH4175与GH4975等一系列高性能盘材合金及全尺寸锻件,为先进军用涡扇发动机、大涵道比商用发动机提供了高可靠性、低成本的盘件选材方案。为充分发扬变形盘材在可靠性与成本方面的特有优势,需要在高性能盘材的合金设计与成分优化、自耗锭冶金缺陷的预防与识别、自由锻开坯的效率与成材率提升、双组织双性能盘件制备等方面进一步开展深入的研究工作。

关键词 镍基高温合金盘类锻件化学成分制备工艺组织性能    
Abstract

The newly developed high-performance cast-wrought alloys have been widely applied in advanced turbine engines in recent years, particularly, served as turbine disc and compressor disc. The significant breakthrough has been made on the processing techniques for these highly alloyed disc alloys, including the triple-melting of the large-scale ingots with the diameter more than 500 mm, conversion of the large-scale ingot and the processing of fine-grained billets with the diameter more than 300 mm, customization of the microstructures and properties of disc forgings. The chemical compositions can be well controlled on vacuum arc remelting (VAR) ingots, including the ultra-low carbon content lower than 0.011%. The white spots and freckles have been found to be the primary defects on large-scale VAR ingots, which is triggered by the improper re-melting parameters. The metallurgical defects can be identified on fine-grained billets via supersonic inspection. The investigations have shown that the existence of the micro-duplex structure opens a window for the processing of these highly alloyed disc alloys with up to more than 60% mass fraction of precipitates. Via a multicycle thermal-mechanical processing technique, the hot working process of the disc alloys, can be achieved in a cost-effective way, and the un-recrystallized grains can also be eliminated efficiently. The above-mentioned techniques have greatly promoted the development and application of the high-performance disc alloys, such as GH4065, GH4720, GH4175 and GH4975, et al. These alloys can provide a promising solution of high reliability combined with low life cycle cost for military and commercial gas turbines. Nonetheless, in order to maximize the advantageous of cast-wrought disc alloys on reliability and cost-effective ratio, the comprehensive understanding about the prevention and identification of metallurgical defects, increase in the yield rate of materials during conversion, processing of fine-grained billets and dual-property disc forgings, is still needed.

Key wordsNi-based superalloy    disc forging    chemical composition    processing    microstructure and property
收稿日期: 2019-03-22     
ZTFLH:  TG146.1  
基金资助:国家科技重大专项项目(2017-VI-0015-0087,2017-VI-0018-0090)
通讯作者: 张北江     E-mail: bjzhang@cisri.com.cn
Corresponding author: Beijiang ZHANG     E-mail: bjzhang@cisri.com.cn
作者简介: 张北江,男,1973年生,教授级高级工程师,博士

引用本文:

张北江,黄烁,张文云,田强,陈石富. 变形高温合金盘材及其制备技术研究进展[J]. 金属学报, 2019, 55(9): 1095-1114.
Beijiang ZHANG, Shuo HUANG, Wenyun ZHANG, Qiang TIAN, Shifu CHEN. Recent Development of Nickel-Based Disc Alloys andCorresponding Cast-Wrought Processing Techniques. Acta Metall Sin, 2019, 55(9): 1095-1114.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2019.00078      或      https://www.ams.org.cn/CN/Y2019/V55/I9/1095

图1  国外变形高温合金盘材的发展历程
AlloyMass fraction ofMass fraction of γ′γ-γ′ mismatch at 760 ℃γ′ solvus temperature
Al+Ti+Nb / %at 760 ℃ / %%
GH45865.029-0.3551072
GH47427.837+0.2731095
GH40656.636-0.0161113
GH40798.546+0.1311132
GH47207.543+0.0881158
GH41569.053+0.0031165
GH41519.954-0.1281171
GH417511.055-0.0801176
GH49759.264-0.0791210
表1  高合金化变形高温合金盘材的特征参数对比[3,4,5,8,14,23,24,25,26,27,28]
图2  变形盘材高温持久性能与合金化程度之间的关系
图3  热力学计算获取的GH4065合金MC碳化物析出温度与C含量的关系
图4  变形高温合金盘锻件的标准制备工艺流程及其关键技术问题
图5  双真空熔铸工艺制备的GH4586合金盘锻件上发现的白斑缺陷
图7  开坯工艺不当造成的GH4065合金棒材低倍粗晶
图8  不同γ'质量分数盘材合金双相细晶组织的超塑性变形行为
图6  GH4065合金直径300 mm棒材上观察到的通道偏析缺陷
图9  真空电弧重熔过程中通道偏析诱发与生长机制的数值模拟研究
图10  GH4065合金通道偏析缺陷在开坯过程中的形态演变及其在棒材上的超声波探伤识别
图11  GH4065合金盘锻件上通过超声波探伤确认的脏白斑缺陷
图12  盘材合金热塑性加工过程中沉淀强化相γ'与位错之间的交互作用
图13  GH4065合金热塑性加工过程中在应变诱导γ'相不连续沉淀机制作用下形成的特殊组织形态
图14  热模拟拉伸实验中GH4065合金铸态组织与双相细晶组织的断面收缩率对比
图15  不同γ'相质量分数盘材合金在超塑性变形过程中的γ+γ'双相细晶组织形态
图16  大推力涡扇发动机用GH4065合金盘锻件及其低倍组织均匀性
图17  全尺寸变形盘锻件的热处理态微观组织
[1] ReedR C. The Superalloys: Fundamentals and Applications [M]. Cambridge: Cambridge University Press, 2006: 236
[2] DonachieM J, DonachieS J. Superalloys: A Technical Guide [M]. 2nd Ed., Ohio: ASM International, 2002: 120
[3] ShiC X, ZhongZ Y. Forty years of superalloy R & D in China [J]. Acta Metall. Sin., 1997, 33: 1
[3] 师昌绪, 仲增墉. 中国高温合金40年 [J]. 金属学报, 1997, 33: 1
[4] JiangH F. Requirements and forecast of turbine disk materials [J]. Gas Turb. Exp. Res., 2002, 15(4): 1
[4] 江和甫. 对涡轮盘材料的需求及展望 [J]. 燃气涡轮试验与研究, 2002, 15(4): 1)
[5] WangX D, WangH C. Improved development superalloys, promote the aero-engine development [A]. The Thirteenth Session of the Annual China Superalloys Conference [C]. Beijing: Metallurgical Industry Press, 2015: 3
[5] (王旭东, 王海川. 改进发展高温合金, 推动航空发动机研制 [A]. 第十三届中国高温合金年会论文集 [C]. 北京: 冶金工业出版社, 2015: 3)
[6] SimsC T, StoloffN S, HagelW C. Superalloys II—High Temperature Materials for Aerospace and Industrial Power [M]. New York: John Wiley & Sons, 1987: 32
[7] DevauxA, GeorgesE, HéritierP. Development of new C&W superalloys for high temperature disk applications [J]. Adv. Mater. Res., 2011, 278: 405
[8] High Temperature Material Branch of the Chinese Society for Metals. China Superalloys Handbook (Volume One) [M]. Beijing: China Standards Press, 2012: 891
[8] (中国金属学会高温材料分会. 中国高温合金手册/上卷: 变形高温合金 焊接用高温合金丝 [M]. 北京: 中国标准出版社, 2012: 891)
[9] WilliamsJ C, Starke JrE A. Progress in structural materials for aerospace systems [J]. Acta Mater., 2003, 51: 5775
[10] FangB, JiZ, LiuM, , et al. Study on constitutive relationships and processing maps for FGH96 alloy during two-pass hot deformation [J]. Mater. Sci. Eng., 2014, A590: 255
[11] CarterJ L W, KuperM W, UchicM D, , et al. Characterization of localized deformation near grain boundaries of superalloy René-104 at elevated temperature [J]. Mater. Sci. Eng., 2014, A605: 127
[12] FindleyK O, SaxenaA. Low cycle fatigue in René 88DT at 650 ℃: Crack nucleation mechanisms and modeling [J]. Metall. Mater. Trans., 2006, 37A: 1469
[13] ViswanathanG B, SarosiP M, HenryM F, , et al. Investigation of creep deformation mechanisms at intermediate temperatures in René 88 DT [J]. Acta Mater., 2005, 53: 3041
[14] HuangQ Y, LiH K. Superalloy [M]. Beijing: Metallurgical Industry Press, 2000: 385
[14] 黄乾尧, 李汉康. 高温合金 [M]. 北京: 冶金工业出版社, 2000: 385)
[15] DeckerR F. The evolution of wrought age-hardenable superalloys [J]. JOM, 2006, 58(9): 32
[16] PreliF R, FurrerD. Lessons learned from the development, application and advancement of alloy 718 [A]. 8th International Symposium on Superalloy 718 and Derivatives [C]. Pittsburgh: TMS, 2014: 3
[17] HayesR W, UnocicR R, NasrollahzadehM. Creep deformation of allvac 718Plus [J]. Metall. Mater. Trans., 2015, 46A: 218
[18] LiuY C, ZhangH J, GuoQ Y, , et al. Microstructure evolution of Inconel 718 superalloy during hot working and its recent development tendency [J]. Acta Metall. Sin., 2018, 54: 1653
[18] 刘永长, 张宏军, 郭倩颖等. Inconel 718变形高温合金热加工组织演变与发展趋势 [J]. 金属学报, 2018, 54: 1653
[19] DevauxA, PicquéB, GervaisM F, , et al. AD730TM—A new nickel-based superalloy for high temperature engine rotative parts [A]. Superalloys 2012 [C]. Warrendale, PA: TMS, 2012: 911
[20] CrozetC, DevauxA, ForestierR, , et al. Effect of ingot size on microstructure and properties of the new advanced AD730TM superalloy [A]. Superalloys 2016 [C]. Warrendale, PA: TMS, 2016: 437
[21] HeaneyJ A, LasondeM L, PowellA M, , et al. Development of a new cast and wrought alloy (René 65) for high temperature disk applications [A]. 8th International Symposium on Superalloy 718 and Derivatives [C]. Pittsburgh: TMS, 2014: 67
[22] ReedR C, MotturaA, CruddenD J. Alloys-by-design: Towards optimization of compositions of nickel-based superalloys [A]. Superalloys 2016 [C]. Warrendale, PA: TMS, 2016: 15
[23] ShiC X, ZhongZ Y. Development and innovation of superalloy in China [J]. Acta Metall. Sin., 2010, 46: 1281
[23] 师昌绪, 仲增墉. 我国高温合金的发展与创新 [J]. 金属学报, 2010, 46: 1281
[24] LongZ D, ZhuangJ Y, DengB, , et al. A new method to improve the hot workability of high strength Ni-based superalloys [J]. Acta Metall. Sin., 1999, 35: 1211
[24] 龙正东, 庄景云, 邓 波等. 一种提高高强化高温合金热加工性能的新方法 [J]. 金属学报, 1999, 35: 1211
[25] ZhongZ Y, ZhuangJ Y. Development of several important problems on producing technologies of wrought superalloy [J]. J. Iron Steel Res., 2003, 15: 1
[25] 仲增墉, 庄景云. 变形高温合金生产工艺中几个重要问题的研究和进展 [J]. 钢铁研究学报, 2003, 15: 1
[26] DongJ X, LiL H, LiH Y, , et al. Effect of extent of homogenization on the hot deformation recrystallization of superalloy ingot in cogging process [J]. Acta Metall. Sin., 2015, 51: 1207
[26] 董建新, 李林翰, 李浩宇等. 高温合金铸锭均匀化程度对开坯热变形的再结晶影响 [J]. 金属学报, 2015, 51: 1207
[27] DuJ H, ZhaoG P, DengQ, , et al. Development of wrought superalloy in China [J]. J. Aeron. Mater., 2016, 36(3): 27
[27] 杜金辉, 赵光普, 邓 群等. 中国变形高温合金研制进展 [J]. 航空材料学报, 2016, 36(3): 27)
[28] ZhangB J, ZhaoG P, ZhangW Y, , et al. Investigation of high performance disc alloy GH4065 and associated advanced processing techniques [J]. Acta Metall. Sin., 2015, 51: 1227
[28] 张北江, 赵光普, 张文云等. 高性能涡轮盘材料GH4065及其先进制备技术研究 [J]. 金属学报, 2015, 51: 1227
[29] ZhangB J, ZhaoG P, ZhangW Y, , et al. Deformation mechanisms and microstructural evolution of γ+γ' duplex aggregates generated during thermomechanical processing of nickel-base superalloys [A]. Superalloys 2016 [C]. Warrendale, PA: TMS, 2016: 487
[30] Van Den AvyleJ A, BrooksJ A, PowellA C. Reducing defects in remelting processes for high-performance alloys [J]. JOM, 1998, 50(3): 22
[31] AuburtinP, WangT, CockcroftS L, , et al. Freckle formation and freckle criterion in superalloy castings [J]. Metall. Mater. Trans., 2000, 31B: 801
[32] WangZ X, HuangS, ZhangB J, , et al. Study on freckle of a high-alloyed GH4065 Nickel base wrought superalloy [J]. Acta Metall. Sin., 2019, 55: 417
[32] 王资兴, 黄 烁, 张北江等. 高合金化GH4065镍基变形高温合金点状偏析研究 [J]. 金属学报, 2019, 55: 417
[33] GenereuxP D, BorgC A. Characterization of freckles in a high strength wrought nickel superalloy [A]. Superalloys 2000 [C]. Warrendale, PA: TMS, 2000: 19
[34] CharpagneM A, CharpagneM A, BillotT, , et al. Heteroepitaxial recrystallization observed in René 65TM and Udimet 720TM: A new recrystallization mechanism possibly occurring in all low lattice mismatch γ-γ' superalloys? [A]. Superalloys 2016 [C]. Warrendale, PA: TMS, 2016: 417
[35] AndrewW, AudeL, AudeL, , et al. Thermal stability of cast and wrought alloy Rene 65 [A]. Superalloys 2016 [C]. Warrendale, PA: TMS, 2016: 793
[36] WlodekS T, KellyM, AldenD A. The structure of René 88 DT [A]. Superalloys 1996 [C]. Warrendale, PA: TMS, 1996: 129
[37] BryantD J, McIntoshD G. The manufacture and evaluation of a large turbine disc in cast and wrought alloy 720Li [A]. Superalloys 1996 [C]. Warrendale, PA: TMS, 1996: 713
[38] ZhangB J, ZhaoG P, JiaoL Y, , et al. Influence of hot working process on microstructures of superalloy GH4586 [J]. Acta Metall. Sin., 2005, 41: 351
[38] 张北江, 赵光普, 焦兰英等. 热加工工艺对GH4586合金微观组织的影响 [J]. 金属学报, 2005, 41: 351
[39] ZhangB J, ZhaoG P, XuG H, , et al. Hot deformation behavior and micro-structure evolution of superalloy GH742 [J]. Acta Metall. Sin., 2005, 41: 1207
[39] 张北江, 赵光普, 胥国华等. GH742合金热变形行为与微观组织演化 [J]. 金属学报, 2005, 41: 1207
[40] SchafrikR E. Materials for a non-steady-state world [J]. Metall. Mater. Trans., 2016, 47B: 1505
[41] SunX F, YinF S, LiJ G, , et al. Solidification behavior of a cast nickel-base superalloy [J]. Acta Metall. Sin., 2003, 39: 27
[41] 孙晓峰, 殷凤仕, 李金国等. 一种铸造镍基高温合金的凝固行为 [J]. 金属学报, 2003, 39: 27
[42] ZhangJ, HuangT W, LiuL, , et al. Advances in solidification characteristics and typical casting defects in nickel-based single crystal superalloys [J]. Acta Metall. Sin., 2015, 51: 1163
[42] 张 军, 黄太文, 刘 林等. 单晶高温合金凝固特性与典型凝固缺陷研究 [J]. 金属学报, 2015, 51: 1163
[43] ZhangJ, LouL H. Basic research in development and application of cast superalloy [J]. Acta Metall. Sin., 2018, 54: 1637
[43] 张 健, 楼琅洪. 铸造高温合金研发中的应用基础研究 [J]. 金属学报, 2018, 54: 1637
[44] Carter JrW T, JonesR M F. Nucleated casting for the production of large superalloy ingots [J]. JOM, 2005, 57(4): 52
[45] MonajatiH, TaheriA K, JahaziM, , et al. Deformation characteristics of isothermally forged UDIMET 720 nickel-base superalloy [J]. Metall. Mater. Trans., 2005, 36A: 895
[46] RobsonJ D. Modeling competitive continuous and discontinuous precipitation [J]. Acta Mater., 2013, 61: 7781
[47] CantwellP R, TangM, DillonS J, , et al. Grain boundary complexions [J]. Acta Mater., 2014, 62: 1
[48] BondB J, O'BrienC M, RussellJ L, , et al. René 65 billet material for forged turbine components [A]. 8th International Symposium on Superalloy 718 and Derivatives [C]. Pittsburgh: TMS, 2014: 107
[49] LarrouyB, VillechaiseP, CormierJ, , et al. Influence of both temperature and γ' distribution on the development of strain incompatibilities at grain boundaries at low temperature in the UdimetTM 720 Li superalloy [A]. 8th International Symposium on Superalloy 718 and Derivatives [C]. Pittsburgh: TMS, 2014: 713
[50] ValitovV A. Formation of nanocrystalline structure upon severe thermomechanical processing and its effect on the superplastic properties of nickel base alloys [A]. 8th International Symposium on Superalloy 718 and Derivatives [C]. Pittsburgh: TMS, 2014: 739
[51] TileyJ, ViswanathanG B, SrinivasanR, , et al. Coarsening kinetics of γ' precipitates in the commercial nickel base Superalloy René 88 DT [J]. Acta Mater., 2009, 57: 2538
[52] MacSleyneJ, UchicM D, SimmonsJ P, , et al. Three-dimensional analysis of secondary γ' precipitates in René-88 DT and UMF-20 superalloys [J]. Acta Mater., 2009, 57: 6251
[53] RadisR, SchafferM, AlbuM, , et al. Multimodal size distributions of γ' precipitates during continuous cooling of UDIMET 720 Li [J]. Acta Mater., 2009, 57: 5739
[1] 任维鹏, 李青, 黄强, 肖程波, 何利民. 定向凝固镍基高温合金DZ466表面CoAl涂层的氧化及组织演变[J]. 金属学报, 2018, 54(4): 566-574.
[2] 陈树君, 王宣, 袁涛, 李晓旭. 镁合金焊缝液化裂纹敏感性及预测方法探究[J]. 金属学报, 2018, 54(12): 1735-1744.
[3] 周小卫,欧阳春,乔岩欣,沈以赴. 活性Ti表面电沉积Ni-CeO2复合镀层及其强韧性机理分析[J]. 金属学报, 2017, 53(2): 140-152.
[4] 徐超, 佴启亮, 姚志浩, 江河, 董建新. 晶界氧化对GH4738高温合金疲劳裂纹扩展的作用[J]. 金属学报, 2017, 53(11): 1453-1460.
[5] 胡松松,刘林,崔强伟,黄太文,张军,傅恒志. 镍基高温合金定向凝固过程中的汇聚型双晶竞争生长*[J]. 金属学报, 2016, 52(8): 897-904.
[6] 张思倩,王栋,王迪,彭建强. Re对一种定向凝固镍基高温合金微观组织的影响*[J]. 金属学报, 2016, 52(7): 851-858.
[7] 孙文,秦学智,郭建亭,楼琅洪,周兰章. 铸造镍基高温合金中初生MC碳化物的退化过程和机理*[J]. 金属学报, 2016, 52(4): 455-462.
[8] 谢君, 于金江, 孙晓峰, 金涛. K416B镍基铸造高温合金的700 ℃高周疲劳行为*[J]. 金属学报, 2016, 52(3): 257-263.
[9] 侯介山,郭建亭,袁超,周兰章. 一种抗热腐蚀铸造镍基高温合金中σ相的析出及回溶*[J]. 金属学报, 2016, 52(2): 168-176.
[10] 魏恺文,王泽敏,曾晓雁. AZ91D镁合金在激光选区熔化成形中的元素烧损*[J]. 金属学报, 2016, 52(2): 184-190.
[11] 张北江,赵光普,张文云,黄烁,陈石富. 高性能涡轮盘材料GH4065及其先进制备技术研究[J]. 金属学报, 2015, 51(10): 1227-1234.
[12] 孙文, 秦学智, 郭建亭, 楼琅洪, 周兰章. (W+Mo)/Cr比对铸造镍基高温合金时效组织和持久性能的影响[J]. 金属学报, 2015, 51(1): 67-76.
[13] 柳泉, 阳颖飞, 鲍泽斌, 朱圣龙, 王福会. PtAl2单相涂层的高温抗氧化性能及失效机制研究[J]. 金属学报, 2014, 50(9): 1102-1108.
[14] 杨金侠, 孙元, 金涛, 孙晓峰, 胡壮麒. 一种细晶铸造镍基高温合金的组织与力学性能*[J]. 金属学报, 2014, 50(7): 839-844.
[15] 孙文, 秦学智, 郭永安, 郭建亭, 楼琅洪, 周兰章. Nb/Ti比对铸造镍基高温合金长期时效组织演化的影响*[J]. 金属学报, 2014, 50(6): 744-752.