Please wait a minute...
金属学报  2015, Vol. 51 Issue (8): 1010-1016    DOI: 10.11900/0412.1961.2015.00071
  本期目录 | 过刊浏览 |
Ni50-xCoxMn39Sn11 (x=0, 2, 4, 6) Heusler合金的马氏体相变和应变行为研究*
李哲1(),徐琛1,徐坤1,王豪1,张元磊1,敬超2
2 上海大学物理系, 上海 200444
STUDY OF MARTENSITIC TRANSFORMATION AND STRAIN BEHAVIOR IN Ni50-xCoxMn39Sn11 (x=0, 2, 4, 6) HEUSLER ALLOYS
Zhe LI1(),Chen XU1,Kun XU1,Hao WANG1,Yuanlei ZHANG1,Chao JING2
1 Key Laboratory for Advanced Functional and Low Dimensional Materials of Yunnan Higher Education Institute, College of Physics and Electronic Engineering, Qujing Normal University, Qujing 655011
2 Department of Physics, Shanghai University, Shanghai 200444
引用本文:

李哲,徐琛,徐坤,王豪,张元磊,敬超. Ni50-xCoxMn39Sn11 (x=0, 2, 4, 6) Heusler合金的马氏体相变和应变行为研究*[J]. 金属学报, 2015, 51(8): 1010-1016.
Zhe LI, Chen XU, Kun XU, Hao WANG, Yuanlei ZHANG, Chao JING. STUDY OF MARTENSITIC TRANSFORMATION AND STRAIN BEHAVIOR IN Ni50-xCoxMn39Sn11 (x=0, 2, 4, 6) HEUSLER ALLOYS[J]. Acta Metall Sin, 2015, 51(8): 1010-1016.

全文: PDF(1686 KB)   HTML
摘要: 

通过结构和磁性测量, 研究了Ni50-xCoxMn39Sn11 (x=0, 2, 4, 6) Heusler合金的晶体结构、相变和磁性. 结果表明, 随Co含量增加, 该系列合金的马氏体相变温度明显下降, 而Curie温度却呈现出上升的趋势, 并在室温下展现出不同的晶体结构. 同时, Co含量的增加导致样品在奥氏体相的磁性迅速增加, 而马氏体相的磁性却几乎保持不变, 显著地提高了2相之间的磁化强度差异(ΔM). 特别是当Co含量增加到x=4时, 2相之间的ΔM达到40 Am2/kg, 并表现出磁场驱动马氏体相变的特征. 此外, 还研究了Ni50-xCoxMn39Sn11 (x=0, 2, 4)样品在马氏体相变过程中的应变行为. 其中, x=4样品的相变应变量达到了0.17%, 通过3 T的磁场循环, 该样品在215~235 K的温度范围均显示出可回复磁感生应变. 这种可回复的应变行为可归因于样品中的部分马氏体相变可由等温磁场驱动.

关键词 Ni-Co-Mn-Sn形状记忆合金马氏体相变磁感生应变    
Abstract

The crystal structure, phase transformations and magnetic properties for Ni50-xCoxMn39Sn11 (x=0, 2, 4, 6) Heusler alloys have been systematically studied by means of structure and magnetism measurements. The results show that with increase of Co concentration, the martensitic transformation temperatures are obviously decreased, while the Curie temperatures of austenite are gradually increased, and they present different structures at room temperature. At the same time, with increasing Co content, the austenitic magnetism rapidly enhances, while the martensitic magnetism almost keeps unchanged. This leads to a significant improvement of difference magnetization (ΔM) between two phases. For Co content added to x=4, the value of ΔM between two phases achieves about 40 Am2/kg and exhibits magnetic field-induced martensitic transformation. Using strain measurement, the strain behavior related to martensitic transition in Ni50-xCoxMn39Sn11 (x=0, 2, 4) samples was studied. It is found that the phase transition strain reaches 0.17% in Ni46Co4Mn39Sn11 sample. Within the magnetic cycles of 3 T, this sample displays a reproducible magnetostrain in temperature range of 215~235 K. Such a reproducible strain could be ascribed to the fact that a partial martensitic transformation of this sample can be driven by isothermal magnetic field.

Key wordsNi-Co-Mn-Sn    shape memory alloy    martensitic transformation    magnetostrain
    
基金资助:* 国家自然科学基金项目11364035, 11404186和51371111, 云南省科技厅应用基础研究项目2013FZ110和2012FD051, 以及曲靖师范学院创新团队研究计划项目TD201301资助
图1  Ni50-xCoxMn39Sn11样品在室温下的XRD谱
图2  在外加0.05 T磁场条件下, Ni50-xCoxMn39Sn11样品磁化强度(M)随温度(T)的变化曲线
x T C A / K M s / K M f / K A s / K A f / K
0 310 293 248 260 300
2 314 291 226 238 295
4 320 238 192 204 251
6 365 - - - -
表1  Ni50-xCoxMn39Sn11样品在马氏体相变过程中的特征温度
图3  Ni50-xCoxMn39Sn11样品在不同温度下的磁化曲线
图4  Ni50-xCoxMn39Sn11样品在无外加场下, 样品的相变应变量(l)随温度的变化
图5  Ni46Co4Mn39Sn11样品在不同温度下的等温磁感生应变曲线
图6  Ni46Co4Mn39Sn11样品相变平衡温度随外加磁场之间的变化关系
图7  升温条件下的Ni46Co4Mn39Sn11样品的归一化热磁回线
[1] Murray S J, Marioni M, Allen S M, O'Handley R C, Lograsso T A. Appl Phys Lett, 2000; 77: 886
[2] Sozinov A, Likhachev A A, Lanska N, Ullakko K. Appl Phys Lett, 2002; 80: 1746
[3] Weiss S, Scheerbaum N, Liu J, Klauss H, Schultz L, M?der E, H?bler R, Heinrich G, Gutfleisch O. Adv Eng Mater, 2012; 14: 20
[4] Li Z, Wang J M, Liu W C, Jiang C B. Acta Metall Sin, 2008; 44: 302 (李 灼, 王敬明, 刘伟超, 蒋成保. 金属学报, 2008; 44: 302)
[5] You S Q, Cui Y T, Wu L, Kong C Y, Ma Y, Yang X H, Pan F S. Acta Metall Sin, 2009; 45: 351 (游素琴, 崔玉婷, 武 亮, 孔春阳, 马 勇, 杨晓红, 潘复生. 金属学报, 2009; 45: 351)
[6] O'Handley R C. J Appl Phys, 1998; 83: 3263
[7] Sutou Y, Imano Y, Koeda N, Omori T, Kainuma R, Ishida K, Oikawa K. Appl Phys Lett, 2004; 85: 4358
[8] Koyama K, Watanabe K, Kanomata T, Kaimuma R, Oikawa K, Ishida K. Appl Phys Lett, 2006; 88: 132505
[9] Oikawa K, Ito W, Imano Y, Sutou Y, Kainuma R, Ishida K, Okamoto S, Kitakami O, Kanomata T. Appl Phys Lett, 2006; 88: 122507
[10] Kainuma R, Imano Y, Ito W, Sutou Y, Morito H, Okamoto S, Kitakami O, Oikawa K, Fujita A, Kanomota T, Ishida K. Nature, 2006; 439: 957
[11] Kainuma R, Imano Y, Ito W, Morito H, Sutou Y, Oikawa K, Fujita A, Ishida K, Okamoto S, Kitakami O. Appl Phys Lett, 2006; 88: 192513
[12] Krenke T, Duman E, Acet M, Wassermann E, Moya X, Ma?osa L, Planes A. Phys Rev, 2007; 75B: 104414
[13] Sharma V K, Chattopadhyay M K, Chouhan A, Roy S B. J Phys, 2009; 42D: 185005
[14] Pathaka A K, Dubenkoa I, Stadlerb S, Ali N. J Alloys Compd, 2011; 509: 1106
[15] Liu J, Aksoy S, Scheerbaum N, Acet M, Gutfleisch O. Appl Phys Lett, 2009; 95: 232515
[16] Li Z, Jing C, Zhang H L, Yu D H, Chen L, Kang B J, Cao S X, Zhang J C. J Appl Phys, 2010; 108: 113908
[17] Jing C, Wang X L, Liao P, Li Z, Yang Y J, Kang B J, Deng D M, Cao S X, Zhang J C, Zhu J. J Appl Phys, 2013; 114: 063907
[18] Planes A, Ma?osa L, Acet M. J Phys: Condens Matter, 2009; 21: 233201
[19] Ito W, Xu X, Umetsu R, Kanomata T, Ishida K, Kainuma R. Appl Phys Lett, 2010; 97: 242512
[20] Ma S C, Xuan H C, Zhang C L, Wang L Y, Cao Q Q, Wang D H, Du Y W. Appl Phys Lett, 2010; 97: 052506
[21] Cong D Y, Roth S, Schultz L. Acta Mater, 2012; 60: 5335
[22] Yu S Y, Wei J J, Kang S S, Chen J L, Wu G H. J Alloys Compd, 2014; 586: 328.
[23] Ye M, Kimura A, Miura Y, Shirai M, Cui Y T, Shimada K, Namatame H, Taniguchi M, Ueda S, Kobayashi K, Kainuma R, Shishido T, Fukushima K, Kanomata T. Phys Rev Lett, 2010; 104: 176401.
[24] Khan M, Jung J, Stoyko S S, Mar A, Quetz A, Samanta T, Dubenko I, Ali N, Stadler S, Chow K H. Appl Phys Lett, 2012; 100: 172403.
[25] Liu Z H, Yi B, Li G T, Ma X Q. Acta Phys Sin, 2012; 61: 108104 (柳祝红, 伊 比, 李歌天, 马星桥. 物理学报, 2012; 61: 108104)
[26] ?a?io?lu E, Sandratskii L M, Bruno P. Phys Rev, 2008; 77B: 064417
[27] Stager C V, Campbell C C M. Can J Phys, 1978; 56: 674
[28] Ma L, Zhang H W, Yu S Y, Zhu Z Y, Chen J L, Wu G H, Liu H Y, Qu J P, Li Y X. Appl Phys Lett, 2008; 92: 032509
[29] Yu S Y, Cao Z X, Ma L, Liu G D, Chen J L, Wu G H, Zhang B, Zhang X X. Appl Phys Lett, 2007; 91: 102507
[30] Yu S Y, Ma L, Liu G D, Liu Z H, Chen J L, Cao Z X, Wu G H, Zhang B, Zhang X X. Appl Phys Lett, 2007; 90: 242501
[31] Wang W H, Liu Z H, Chen J L, Zhang J, Wu G H, Zhan W S. Phys Rev, 2001; 65B: 012416
[32] Shamberger P J, Ohuchi F. Phys Rev, 2009; 79B: 144407
[1] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[2] 陈斐, 邱鹏程, 刘洋, 孙兵兵, 赵海生, 沈强. 原位激光定向能量沉积NiTi形状记忆合金的微观结构和力学性能[J]. 金属学报, 2023, 59(1): 180-190.
[3] 杨超, 卢海洲, 马宏伟, 蔡潍锶. 选区激光熔化NiTi形状记忆合金研究进展[J]. 金属学报, 2023, 59(1): 55-74.
[4] 张鑫, 崔博, 孙斌, 赵旭, 张欣, 刘庆锁, 董治中. Y元素对Cu-Al-Ni高温形状记忆合金性能的影响[J]. 金属学报, 2022, 58(8): 1065-1071.
[5] 李伟, 贾兴祺, 金学军. 高强韧QPT工艺的先进钢组织调控和强韧化研究进展[J]. 金属学报, 2022, 58(4): 444-456.
[6] 原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.
[7] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-NbTi原位复合材料的Lüders带型变形和载荷转移行为[J]. 金属学报, 2021, 57(7): 921-927.
[8] 叶俊杰, 贺志荣, 张坤刚, 杜雨青. 时效对Ti-50.8Ni-0.1Zr形状记忆合金显微组织、拉伸性能和记忆行为的影响[J]. 金属学报, 2021, 57(6): 717-724.
[9] 王金亮, 王晨充, 黄明浩, 胡军, 徐伟. 低应变预变形对变温马氏体相变行为的影响规律及作用机制[J]. 金属学报, 2021, 57(5): 575-585.
[10] 左良, 李宗宾, 闫海乐, 杨波, 赵骧. 多晶Ni-Mn-X相变合金的织构化与功能行为[J]. 金属学报, 2021, 57(11): 1396-1415.
[11] 肖飞, 陈宏, 金学军. 形状记忆合金弹热制冷效应的研究现状[J]. 金属学报, 2021, 57(1): 29-41.
[12] 陈翔,陈伟,赵洋,禄盛,金晓清,彭向和. 考虑塑性变形和相变耦合效应的NiTiNb记忆合金管接头装配性能模拟[J]. 金属学报, 2020, 56(3): 361-373.
[13] 王世宏,李健,葛昕,柴锋,罗小兵,杨才福,苏航. γ/ε双相Fe-19Mn合金在拉伸变形过程中的组织演变和加工硬化行为[J]. 金属学报, 2020, 56(3): 311-320.
[14] 郑晓航, 宁睿, 段佳彤, 蔡伟. Ti70-xTa15Zr15Fex (x=0.3、0.6、1.0)形状记忆合金薄膜的马氏体相变与阻尼行为[J]. 金属学报, 2020, 56(12): 1690-1696.
[15] 陈雷, 郝硕, 梅瑞雪, 贾伟, 李文权, 郭宝峰. 节约型双相不锈钢TRIP效应致塑性增量及其固溶温度依赖性[J]. 金属学报, 2019, 55(11): 1359-1366.