Please wait a minute...
金属学报  2014, Vol. 50 Issue (8): 979-988    
  本期目录 | 过刊浏览 |
Mg-(4-x)Nd-xGd-Sr-Zn-Zr生物镁合金的组织、力学和腐蚀性能*
章晓波1,2(), 薛亚军1,2, 王章忠1,2, 贺显聪1,2, 王强3
1 南京工程学院材料工程学院, 南京 211167
2 江苏省先进结构材料与应用技术重点实验室, 南京 211167
3 江苏康尚医疗器械有限公司, 丹阳 212300
MICROSTRUCTURE, MECHANICAL AND CORROSION PROPERTIES OF Mg-(4-x)Nd-xGd-Sr-Zn-Zr BIOMAGNESIUM ALLOYS
ZHANG Xiaobo1,2(), XUE Yajun1,2, WANG Zhangzhong1,2, HE Xiancong1,2, WANG Qiang3
1 School of Materials Engineering, Nanjing Institute of Technology, Nanjing 211167
2 Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, Nanjing 211167
3 Jiangsu Konsung Equipment Co., Ltd, Danyang 212300
引用本文:

章晓波, 薛亚军, 王章忠, 贺显聪, 王强. Mg-(4-x)Nd-xGd-Sr-Zn-Zr生物镁合金的组织、力学和腐蚀性能*[J]. 金属学报, 2014, 50(8): 979-988.
Xiaobo ZHANG, Yajun XUE, Zhangzhong WANG, Xiancong HE, Qiang WANG. MICROSTRUCTURE, MECHANICAL AND CORROSION PROPERTIES OF Mg-(4-x)Nd-xGd-Sr-Zn-Zr BIOMAGNESIUM ALLOYS[J]. Acta Metall Sin, 2014, 50(8): 979-988.

全文: PDF(4836 KB)   HTML
摘要: 

采用重力浇铸法制备了Mg-(4-x)Nd-xGd-0.3Sr-0.2Zn-0.4Zr (质量分数, %, x=0, 1, 2, 3) 4组合金, 并对其进行了固溶+人工时效热处理(T6). 利用XRD对铸态合金的物相进行分析, 采用SEM观察合金的组织, 采用拉伸试验机和显微硬度计测试合金的室温拉伸性能和显微硬度, 采用失重法评价合金在模拟体液中的腐蚀速率, 并对腐蚀形貌进行观察. 结果表明, 随着Gd部分取代Nd, 铸态合金的组织先细化后又变粗, 第二相含量逐渐减少, 室温力学性能和耐蚀性能均提高. 而对于T6态合金, 强度和硬度均比不含Gd的合金要低, 耐蚀性能则优于不含Gd的合金.

关键词 生物镁合金显微组织力学性能腐蚀性能    
Abstract

Magnesium and its alloys have been widely studied as biomaterials for over a decade due to their good biocompatibility, good bio-mechanical properties and biodegradation in human body. However, most of them are commercial magnesium alloys, which are not taken biocompatibility into account. Even though some novel magnesium alloys were developed recently, there are still no biodegradable magnesium alloys available for clinical application because of the rapid corrosion rate and localized corrosion mechanism. In order to develop new kinds of biodegradable magnesium alloys with excellent mechanical properties and corrosion resistance in simulated body fluid, four alloys with nominal composition Mg-(4-x)Nd-xGd-0.3Sr-0.2Zn-0.4Zr (mass fraction, %, x=0, 1, 2, 3) were prepared by gravity casting on the basis of previous studied Mg-Nd-Zn-Zr alloys, and solution treatment + artificial aging treatment (T6) was conducted on the as-cast alloys. The phases were identified using XRD, the microstructure was observed with SEM, the tensile properties and microhardness were carried out using tensile test machine and microhardness tester, the corrosion rate of the alloys was evaluated in simulated body fluid by mass loss method, and corrosion morphology was observed by SEM. It was found that Mg41Nd5 phase was formed in grain boundaries when Gd addition was less than Nd, while Mg3Gd was formed when Gd addition was more than Nd. The microstructure was refined firstly but was coarsen finally, and the volume fraction of the second phase decreased with increasing Gd addition due to relatively large solubility of Gd in Mg matrix than Nd. The mechanical properties at room temperature and corrosion resistance of the as-cast alloys at 37.5 ℃ were improved with Gd addition. As for the T6 state alloys, the strength and microhardness of the alloys with Gd addition were lower than those of the alloy without Gd, which indicates that the precipitation strengthening effect of Gd is weaker than that of Nd. Nevertheless, the corrosion resistance of the alloys with Gd addition was better than the alloy without Gd under T6 condition. The four alloys both under as-cast and T6 conditions exhibit relatively uniform corrosion mode, which is a desired corrosion characterization for degradable biomaterial.

Key wordsbiomagnesium alloy    microstructure    mechanical property    corrosion property
收稿日期: 2013-11-26     
ZTFLH:  TG146.2  
基金资助:*国家自然科学基金项目51301089, 江苏省自然科学基金项目BK20130745, 江苏省高校自然科学研究项目13KJB430014, 南京工程学院创新基金项目CKJA201201和江苏省“青蓝工程”项目资助
作者简介: null

章晓波, 男, 1981年生, 副教授, 博士 DOI: 10.11900/0412.1961.2013.00769

Alloy x Solution treatment Aging treatment
1 0 540 ℃, 40 h
540 ℃, 24 h
520 ℃, 40 h
520 ℃, 24 h
200 ℃, 12 h
200 ℃, 8 h
200 ℃, 24 h
200 ℃, 12 h
2 1
3 2
4 3
表1  镁合金的T6处理工艺参数
图1  铸态镁合金的XRD谱
图2  铸态镁合金微观组织的SEM像
图3  铸态镁合金2的共晶组织及EDS分析结果
图4  T6态镁合金微观组织的SEM像
图5  T6态镁合金的SEM像及EDS分析
图6  不同状态下镁合金的力学性能
图7  镁合金在模拟体液中浸泡120 h的腐蚀速率
图8  铸态镁合金在模拟体液中浸泡120 h洗去腐蚀产物后的表面形貌
图9  合金2在模拟体液中浸泡120 h洗去腐蚀产物后的形貌及晶界处树枝晶EDS分析
图10  T6态镁合金在模拟体液中浸泡120 h洗去腐蚀产物后的表面形貌
[1] Staiger M P, Pietak A M, Huadmai J, Dias G. Biomaterials, 2006; 27: 1728
[2] Li Z J, Gu X N, Lou S Q, Zheng Y F. Biomaterials, 2008; 29: 1329
[3] Castellani C, Lindtner R A, Hausbrandt P, Tschegg E, Stanzl-Tschegg S E, Zanoni G, Beck S, Weinberg A M. Acta Biomater, 2011; 7: 432
[4] Bornapour M, Muja N, Shum-Tim D, Cerruti M, Pekguleryuz M. Acta Biomater, 2013; 9: 5319
[5] Shingde M, Hughes J, Boadle R, Wills E J, Pamphlett R. Med J Australia, 2005; 183: 145
[6] Gu X N, Xie X H, Li N, Zheng Y F, Qin L. Acta Biomater, 2012; 8: 2360
[7] Berglund I S, Brar H S, Dolgova N, Acharya A P, Keselowsky B G, Sarntinoranont M, Manuel M V. J Biomed Mater Res, 2012; 100B: 1524
[8] Wang Z H, Yan J, Li J N, Zheng Q, Wang Z G, Zhang X N, Zhang S X. Mater Sci Eng, 2012; B177: 388
[9] Zhang X B, Yuan G Y, Niu J L, Fu P H, Ding W J. J Mech Behav Biomed Mater, 2012; 9: 153
[10] Ren Y B, Huang J J, Yang K, Zhang B C, Yao Z M. Acta Metall Sin, 2005; 41: 1288
[10] (任伊宾, 黄晶晶, 杨 柯, 张炳春, 姚治铭. 金属学报, 2005; 41: 1288)
[11] Wang Y, Liao Z D, Song C J, Zhang H F. Rare Met Mater Eng, 2013; 42: 661
[12] Zhang W J, Li M H, Chen Q, Hu W Y, Zhang W M, Xin W. Mater Des, 2012; 39: 379
[13] Gao J H, Guan S K, Ren Z W, Sun Y F, Zhu S J, Wang B. Mater Lett, 2011; 65: 691
[14] Zhang X B, Wang Z Z, Yuan G Y, Xue Y J. Mater Sci Eng, 2012; B177: 1113
[15] Ma C, Chen L Y, Xu J Q, Fehrenbacher A, Li Y, Pfefferkorn F E, Duffie N A, Zheng J, Li X C. J Biomed Mater Res, 2013; 101B: 870
[16] Qu L J, Li M Q, Zhang E L, Ma C, Li D Y. Trans Mater Heat Treatment, 2013; 34: 130
[16] (曲立杰, 李慕勤, 张二林, 马 臣, 李扬德. 材料热处理学报, 2013; 34: 130)
[17] Chen S, Guan S K, Chen B, Li W, Wang J, Wang L G, Zhu S J, Hu J H. Appl Surf Sci, 2011; 257: 4464
[18] Mao L H, Wang Y L, Wan Y Z, He F, Huang Y. Rare Met Mater Eng, 2010; 39: 2075
[19] Kim B H, Park K C, Park Y H, Park I M. Mater Sci Eng, 2011; A528: 808
[20] Li J H, Jie W Q, Yang G Y. Rare Met Mater Eng, 2008; 37: 1751
[20] (李杰华, 介万奇, 杨光昱. 稀有金属材料与工程, 2008; 37: 1751)
[21] Zhang X B, Wu Y J, Xue Y J, Wang Z Z, Yang L. Mater Lett, 2012; 86: 42
[22] Zhang X B, Yuan G Y, Wang Z Z. Chin J Nonferrous Met, 2013; 23: 905
[22] (章晓波, 袁广银, 王章忠. 中国有色金属学报, 2013; 23: 905)
[23] Gu S W, Hao H, Zhang A M, Song Y D, Zhang X G. Spec Cast Nonferrous Alloys, 2011; 31: 472
[23] (谷松伟, 郝 海, 张爱民, 宋迎德, 张兴国. 特种铸造及有色合金, 2011; 31: 472)
[24] Li J H, Jie W Q, Yang G Y. Rare Met Mater Eng, 2010; 39: 101
[24] (李杰华, 介万奇, 杨光昱. 稀有金属材料与工程, 2010; 39: 101)
[25] Zhu S M, Gibson M A, Easton M A, Nie J F. Scr Mater, 2010; 63: 698
[26] Zhang H, Wang S Q. Acta Metall Sin, 2012; 48: 889
[26] (张 会, 王绍青. 金属学报, 2012; 48: 889)
[27] Song G L, Atrens A, Dargusch M. Corros Sci, 1999; 41: 249
[28] Peng L M, Chang J W, Guo X W, Atrens A, Ding W J, Peng Y H. J Appl Electrochem, 2009; 39: 913
[29] Ding W J, Xiang Y Z, Chang J W, Peng Y H. Chin J Nonferrous Met, 2009; 19: 1713
[29] (丁文江, 向亚贞, 常建卫, 彭颖红. 中国有色金属学报, 2009; 19: 1713)
[1] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[6] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[10] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[11] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[12] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[13] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[14] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[15] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.