Please wait a minute...
金属学报  2014, Vol. 50 Issue (1): 110-120    
  论文 本期目录 | 过刊浏览 |
晶界位错运动与位错反应过程的晶体相场模拟*
高英俊1,2) 卢成健1,3) 黄礼琳1) 罗志荣1,3) 黄创高1,2)
1) 广西大学物理科学与工程技术学院, 南宁 530004
2) 广西大学广西有色金属及特色材料加工重点实验室, 南宁 530004
3) 玉林师范学院物理科学与工程技术学院, 玉林 537000
PHASE FIELD CRYSTAL SIMULATION OF DISLOCA-TION MOVEMENT AND REACTION
GAO Yingjun 1,2), LU Chengjian 1,3), HUANG Lilin 1) LUO Zhirong 1,3), HUANG Chuanggao 1,2)
1) College of Physics Science and Engineering, Guangxi University, Nanning 530004
2) Guangxi Key Laboratory for Non-ferrous Metal and Featured Materials, Guangxi University, Nanning 530004
3) Institute of Physics Science and Engineering Technology, Yulin Normal University, Yulin 537000
全文: PDF(13829 KB)   HTML
摘要: 

采用晶体相场模型模拟了小角度对称倾转晶界结构及其在外加应力作用下的晶界演化消失过程, 从位错的运动形式和体系自由能的变化, 分析晶界的消失过程和位错的反应机理, 并计算了位错分解的激活能. 研究表明, 具有二维三角晶格原子点阵结构形成的小角度对称倾转晶界是由配对的双位错按直线规则排列构成, 可以看成由2套位错Burgers矢量组成. 晶界的消失演化过程主要分为6个特征阶段, 包括如下几方面的特征过程: 首先晶界位错攀移, 然后发生位错分解, 晶界发射位错, 位错由攀移运动转化为作滑移运动;接着滑移位错穿过晶粒内部, 直到对面晶界上湮没, 即被晶界吸收与合并;剩余的晶界位错继续作攀移运动, 然后又出现位错分解, 晶界再次发射位错, 使得位错转为作滑移运动, 与其它作滑移运动的位错在晶内相遇湮没消失. 最后, 所有晶界和位错全部消失, 双晶结构变成为完整的单晶结构. 应用三角晶系的点阵位错的2套基本Burgers矢量的组合, 可以有效地表示位错的发射、分解、合并、吸收、湮没的反应过程, 并能够揭示出这些反应过程的新Burgers矢量的产生和原有的Burgers矢量的消失, 以及Burgers矢量方向发生变化的机理.

关键词 晶界位错反应应变晶体相场模型    
Abstract

Transformations of grain boundaries often strongly influence both the structure and the properties of polycrystalline and nanocrystalline materials. Thus, plastic deformation processes in fine-grained polycrystals and nanocrystalline solids are associated with transformations of grain boundaries, which crucially affect the structure and mechanical characteristics of such solids. Motion of grain boundary dislocations in plastically deformed materials is commonly considered to be the absorption of lattice dislocations by grain boundaries. In order to reveal the mechanism of motion of a low-angle symmetric tilt grain boundary (STGB) associated with the emission and absorption of lattice dislocation, the emission and evolution of a STGB under strain were simulated by phase-field crystal (PFC) model. The decay of STGB and dislocation reactions of separation, annihilation and mergence and their mechanisms were analyzed from the energy point of view, furthermore, the active energy of the dislocation separation was calculated. The research results show that the low-angle STGB is composed of pair dislocations in a line arrangement in two dimensions of triangular atomic lattice, in which there are two sets of basic Burgers vectors. The evolution process of STGB decay can be divided into six typical stages which includes the detail features as: dislocation climbs firstly along the STGB under strain, then the dislocation occurs to break up into two new dislocations after it gets enough energy to overcome the active potential barrier of dislocation, at this time the STGB emits pair dislocations to move in gliding in grain instead of climbing along STGB; gliding for while, the dislocation crosses the grain until it is annihilated by another dislocation at the STGB right in the front, i.e. the Grain boundary absorbs or merges the gliding dislocation. The remain of dislocation in the STGB can still climb along the grain boundary in which splits off again into two dislocations when it gets enough energy, at the same time it looks as if STGB emits the dislocations and changes the dislocation movement from climbing to gliding again. The dislocation continues gliding until it meets another gliding dislocation in grain to be annihilated, finally the total dislocations are annihilated and the STGB disappears. The two grain systems with STGB become one grain system. The two sets of basic Burgers vectors of lattice dislocation in triangular lattice can validly be used to express the dislocation reaction of emission, separation, mergence, absorption, annihilation, and also can reveal the creation of new Burgers vector and the annihilation of old Burgers vectors and mechanism of the directional change of Burgers vectors during the dislocation reaction.

Key wordsgrain boundary    dislocation reaction    strain    phase-field crystal model
收稿日期: 2013-06-04     
ZTFLH:  TG111.2  
基金资助:

* 国家自然科学基金项目51161003和50661001,广西自然科学基金重点项目2012GXNSFDA053001,广西大学广西有色金属及特色材料加工重点实验室开放基金GXKFJ12-01及广西大学科研基金项目XJZ110611资助

Corresponding author: GAO Yingjun, professor, Tel: (0771)3232666, E-mail: gaoyj@gxu.edu.cn   
作者简介: 高英俊, 男, 1962年生, 教授
DOI: 10.3724/SP.J.1037.2013.00308

引用本文:

高英俊, 卢成健, 黄礼琳, 罗志荣, 黄创高. 晶界位错运动与位错反应过程的晶体相场模拟*[J]. 金属学报, 2014, 50(1): 110-120.
GAO Yingjun, LU Chengjian, HUANG Lilin, LUO Zhirong, HUANG Chuanggao. PHASE FIELD CRYSTAL SIMULATION OF DISLOCA-TION MOVEMENT AND REACTION. Acta Metall Sin, 2014, 50(1): 110-120.

链接本文:

https://www.ams.org.cn/CN/      或      https://www.ams.org.cn/CN/Y2014/V50/I1/110

[1] Xu H J, Liu G X. Fundamentals of Materials Science. Beijing: Beijing University of Technology Press, 2001: 265
(徐恒均, 刘国勋. 材料科学基础. 北京: 北京工业大学出版社, 2001: 265)
[2] Hu G X, Cai X. Fundamentals of Materials Science. Shanghai:Shanghai Jiao Tong University Press, 2010: 99
(胡赓祥, 蔡 珣. 材料科学基础. 上海: 上海交通大学出版社, 2010: 99)
[3] Bobylev S V, Ovid’ko I A. Phys Rev, 2003; 67B: 132506
[4] Ovidko I A, Skiba N V. Scr Mater, 2012; 67: 13
[5] Gukkin M Y, Ovidko I A. Phys Rev, 2001; 63B: 064515
[6] Gukkin M Y, Ovidko I A. Acta Mater, 2004; 52: 3793
[7] Hayakawa M, Yamaguchi K, Kimura M. Mater Lett, 2004; 58: 2565
[8] Elder K R, Katakowski M, Haataja M, Grant M. Phys Rev Lett, 2002; 88: 245701
[9] Elder K R, Grant M. Phys Rev, 2004; 70E: 51605
[10] Stefanovic P, Haataja M, Provatas N. Phys Rev, 2009; 80E: 046107
[11] Berry J, Grant M, Elder K R. Phys Rev, 2006; 73E: 31609
[12] Pan S Y, Zhu M F. Acta Phys Sin, 2012; 61: 228102
(潘诗琰, 朱鸣芳. 物理学报, 2012; 61: 228102)
[13] Chen Y, Kang X H, Li D Z. Acta Phys Sin, 2009; 58: 390
(陈 云, 康秀红, 李殿中. 物理学报, 2009; 58: 390)
[14] Gao Y J, Luo Z R, Zhang S Y, Huang C G. Acta Metall Sin, 2010; 46: 1473
(高英俊, 罗志荣, 张少义, 黄创高. 金属学报, 2010; 46: 1473)
[15] Yang T, Chen Z, Dong W P. Acta Metall Sin, 2011; 47: 1301
(杨 涛, 陈 铮, 董卫平. 金属学报, 2011; 47: 1301)
[16] Ren X, Wang J C, Yang Y J, Yang G C. Acta Phys Sin, 2010; 59: 3595
(任 秀, 王锦程, 杨玉娟, 杨根仓, 物理学报, 2010; 59: 3595 )
[17] Gao Y J, Wang J F, Luo Z R, Lu Q H, Liu Y. Chin J Comput Phys, 2013; 30: 577
(高英俊, 王江帆, 罗志荣, 卢强华, 刘 瑶. 计算物理, 2013; 30: 577)
[18] Elder K R, Huang Z, Provatas N. Phys Rev, 2010; 81E: 11602
[19] Yu Y M, Backofen R, Voigt A. J Cryst Growth, 2011; 318: 18
[20] Elder K R, Rossi G, Kanerva P, Sanches F, Ying S C, Granato E, Achim C V, Ala-Nissila T. Phys Rev Lett, 2012; 108: 226102
[21] Gao Y J, Luo Z R, Huang C G, Lu Q H, Lin K. Acta Phys Sin, 2013; 62: 050507
(高英俊, 罗志荣, 黄创高, 卢强华, 林 葵. 物理学报, 2013; 62: 050507)
[22] Greenwood M, Rottler J, Provatas N. Phys Rev, 2011; 83B: 031601
[23] Berry J, Elder K R, Grant M. Phys Rev, 2008; 77B: 224114
[24] Gao Y J, Luo Z R, Huang L L, Lin K. Chin J Nonferrous Met, 2013; 23: 1892
(高英俊, 罗志荣, 黄礼琳, 林 葵. 中国有色金属学报, 2013; 23: 1892)
[25] Chen L Q, Shen J. Comput Phys Commun, 1998; 108: 147
[26] Hirouchi T, Takaki T, Tomita Y. Int J Mech Sci, 2010; 52: 309
[27] Gao Y J, Luo Z R, Hu X Y, Huang C G. Acta Metall Sin, 2010; 46: 1161
(高英俊, 罗志荣, 胡项英, 黄创高. 金属学报, 2010; 46: 1161)
[28] Gao Y J, Luo Z R, Huang L L, Hu X Y. Acta Metall Sin, 2012; 48: 1215
(高英俊, 罗志荣, 黄礼琳, 胡项英. 金属学报, 2012; 48: 1215)
[29] Wu K A, Voorhees P W. Acta Mater, 2012; 60: 407
[30] Mills M J, Daw M S, Foiles S M. Ultramicroscopy, 1994; 56: 79
[31] Shao Y F, Yao X, Zhao X, Wang S Q. Chin Phys, 2012; 21B: 083101
[1] 李秀程,孙明煜,赵靖霄,王学林,尚成嘉. 铁素体-贝氏体/马氏体双相钢中界面的定量化晶体学表征[J]. 金属学报, 2020, 56(4): 653-660.
[2] 李鑫,董月成,淡振华,常辉,方志刚,郭艳华. 等通道角挤压制备超细晶纯Ti的腐蚀性能研究[J]. 金属学报, 2019, 55(8): 967-975.
[3] 李学雄,徐东生,杨锐. 双相钛合金高温变形协调性的CPFEM研究[J]. 金属学报, 2019, 55(7): 928-938.
[4] 李旭,杨庆波,樊祥泽,呙永林,林林,张志清. 变形参数对2195 Al-Li合金动态再结晶的影响[J]. 金属学报, 2019, 55(6): 709-719.
[5] 孙德建,刘林,黄太文,张家晨,曹凯莉,张军,苏海军,傅恒志. 镍基单晶高温合金叶片模拟件平台处的枝晶生长和取向演化[J]. 金属学报, 2019, 55(5): 619-626.
[6] 许擎栋, 李克俭, 蔡志鹏, 吴瑶. 脉冲磁场对TC4钛合金微观结构的影响及其机理探究[J]. 金属学报, 2019, 55(4): 489-495.
[7] 邓亚辉,杨银辉,曹建春,钱昊. 23Cr-2.2Ni-6.3Mn-0.26NNi型双相不锈钢动态再结晶行为研究[J]. 金属学报, 2019, 55(4): 445-456.
[8] 万志鹏, 王涛, 孙宇, 胡连喜, 李钊, 李佩桓, 张勇. GH4720Li合金热变形过程动态软化机制[J]. 金属学报, 2019, 55(2): 213-222.
[9] 谢光, 张少华, 郑伟, 张功, 申健, 卢玉章, 郝红全, 王莉, 楼琅洪, 张健. 大尺寸单晶叶片中小角度晶界的形成与演化[J]. 金属学报, 2019, 55(12): 1527-1536.
[10] 张敏,贾芳,程康康,李洁,许帅,仝雄伟. 调质处理对G520钢焊接接头组织及性能的影响[J]. 金属学报, 2019, 55(11): 1379-1387.
[11] 张聪惠, 荣花, 宋国栋, 胡坤. 喷丸表面粗糙度对纯Ti焊接接头在HCl溶液中应力腐蚀开裂行为的影响[J]. 金属学报, 2019, 55(10): 1282-1290.
[12] 崔立山, 姜大强. 基于应变匹配的高性能金属纳米复合材料研究进展[J]. 金属学报, 2019, 55(1): 45-58.
[13] 郭祥如, 孙朝阳, 王春晖, 钱凌云, 刘凤仙. 基于三维离散位错动力学的fcc结构单晶压缩应变率效应研究[J]. 金属学报, 2018, 54(9): 1322-1332.
[14] 钟茜婷, 王磊, 刘峰. Incoloy 028合金不连续动态再结晶中链状组织形成机理研究[J]. 金属学报, 2018, 54(7): 969-980.
[15] 刘廷光, 夏爽, 白琴, 周邦新. 316L不锈钢的三维晶粒与晶界形貌特征及尺寸分布[J]. 金属学报, 2018, 54(6): 868-876.