Please wait a minute...
金属学报  2014, Vol. 50 Issue (1): 110-120    DOI: 10.3724/SP.J.1037.2013.00308
  论文 本期目录 | 过刊浏览 |
晶界位错运动与位错反应过程的晶体相场模拟*
高英俊1,2(), 卢成健1,3, 黄礼琳1, 罗志荣1,3, 黄创高1,2
1 广西大学物理科学与工程技术学院, 南宁 530004
2 广西大学广西有色金属及特色材料加工重点实验室, 南宁 530004
3 玉林师范学院物理科学与工程技术学院, 玉林 537000
PHASE FIELD CRYSTAL SIMULATION OF DISLOCA- TION MOVEMENT AND REACTION
GAO Yingjun1,2(), LU Chengjian1,3, HUANG Lilin1, LUO Zhirong1,3, HUANG Chuanggao1,2
1 College of Physics Science and Engineering, Guangxi University, Nanning 530004
2 Guangxi Key Laboratory for Non-ferrous Metal and Featured Materials, Guangxi University, Nanning 530004
3 Institute of Physics Science and Engineering Technology, Yulin Normal University, Yulin 537000
引用本文:

高英俊, 卢成健, 黄礼琳, 罗志荣, 黄创高. 晶界位错运动与位错反应过程的晶体相场模拟*[J]. 金属学报, 2014, 50(1): 110-120.
Yingjun GAO, Chengjian LU, Lilin HUANG, Zhirong LUO, Chuanggao HUANG. PHASE FIELD CRYSTAL SIMULATION OF DISLOCA- TION MOVEMENT AND REACTION[J]. Acta Metall Sin, 2014, 50(1): 110-120.

全文: PDF(13829 KB)   HTML
摘要: 

采用晶体相场模型模拟了小角度对称倾转晶界结构及其在外加应力作用下的晶界演化消失过程, 从位错的运动形式和体系自由能的变化, 分析晶界的消失过程和位错的反应机理, 并计算了位错分解的激活能. 研究表明, 具有二维三角晶格原子点阵结构形成的小角度对称倾转晶界是由配对的双位错按直线规则排列构成, 可以看成由2套位错Burgers矢量组成. 晶界的消失演化过程主要分为6个特征阶段, 包括如下几方面的特征过程: 首先晶界位错攀移, 然后发生位错分解, 晶界发射位错, 位错由攀移运动转化为作滑移运动;接着滑移位错穿过晶粒内部, 直到对面晶界上湮没, 即被晶界吸收与合并;剩余的晶界位错继续作攀移运动, 然后又出现位错分解, 晶界再次发射位错, 使得位错转为作滑移运动, 与其它作滑移运动的位错在晶内相遇湮没消失. 最后, 所有晶界和位错全部消失, 双晶结构变成为完整的单晶结构. 应用三角晶系的点阵位错的2套基本Burgers矢量的组合, 可以有效地表示位错的发射、分解、合并、吸收、湮没的反应过程, 并能够揭示出这些反应过程的新Burgers矢量的产生和原有的Burgers矢量的消失, 以及Burgers矢量方向发生变化的机理.

关键词 晶界位错反应应变晶体相场模型    
Abstract

Transformations of grain boundaries often strongly influence both the structure and the properties of polycrystalline and nanocrystalline materials. Thus, plastic deformation processes in fine-grained polycrystals and nanocrystalline solids are associated with transformations of grain boundaries, which crucially affect the structure and mechanical characteristics of such solids. Motion of grain boundary dislocations in plastically deformed materials is commonly considered to be the absorption of lattice dislocations by grain boundaries. In order to reveal the mechanism of motion of a low-angle symmetric tilt grain boundary (STGB) associated with the emission and absorption of lattice dislocation, the emission and evolution of a STGB under strain were simulated by phase-field crystal (PFC) model. The decay of STGB and dislocation reactions of separation, annihilation and mergence and their mechanisms were analyzed from the energy point of view, furthermore, the active energy of the dislocation separation was calculated. The research results show that the low-angle STGB is composed of pair dislocations in a line arrangement in two dimensions of triangular atomic lattice, in which there are two sets of basic Burgers vectors. The evolution process of STGB decay can be divided into six typical stages which includes the detail features as: dislocation climbs firstly along the STGB under strain, then the dislocation occurs to break up into two new dislocations after it gets enough energy to overcome the active potential barrier of dislocation, at this time the STGB emits pair dislocations to move in gliding in grain instead of climbing along STGB; gliding for while, the dislocation crosses the grain until it is annihilated by another dislocation at the STGB right in the front, i.e. the Grain boundary absorbs or merges the gliding dislocation. The remain of dislocation in the STGB can still climb along the grain boundary in which splits off again into two dislocations when it gets enough energy, at the same time it looks as if STGB emits the dislocations and changes the dislocation movement from climbing to gliding again. The dislocation continues gliding until it meets another gliding dislocation in grain to be annihilated, finally the total dislocations are annihilated and the STGB disappears. The two grain systems with STGB become one grain system. The two sets of basic Burgers vectors of lattice dislocation in triangular lattice can validly be used to express the dislocation reaction of emission, separation, mergence, absorption, annihilation, and also can reveal the creation of new Burgers vector and the annihilation of old Burgers vectors and mechanism of the directional change of Burgers vectors during the dislocation reaction.

Key wordsgrain boundary    dislocation reaction    strain    phase-field crystal model
收稿日期: 2013-06-04     
ZTFLH:  TG111.2  
基金资助:* 国家自然科学基金项目51161003和50661001,广西自然科学基金重点项目2012GXNSFDA053001,广西大学广西有色金属及特色材料加工重点实验室开放基金GXKFJ12-01及广西大学科研基金项目XJZ110611资助
作者简介: null

高英俊, 男, 1962年生, 教授

图1  
图2  
图3  
图4  
图5  
图6  
图7  
图8  
图9  
图10  
图11  
[1] Xu H J,Liu G X. Fundamentals of Materials Science. Beijing: Beijing University of Technology Press, 2001: 265
[1] (徐恒均,刘国勋. 材料科学基础. 北京: 北京工业大学出版社, 2001: 265)
[2] Hu G X,Cai X. Fundamentals of Materials Science. Shanghai:Shanghai Jiao Tong University Press, 2010: 99
[2] (胡赓祥,蔡 珣. 材料科学基础. 上海: 上海交通大学出版社, 2010: 99)
[3] Bobylev S V, Ovid’ko I A.Phys Rev, 2003; 67B: 132506
[4] Ovidko I A, Skiba N V.Scr Mater, 2012; 67: 13
[5] Gukkin M Y, Ovidko I A.Phys Rev, 2001; 63B: 064515
[6] Gukkin M Y, Ovidko I A.Acta Mater, 2004; 52: 3793
[7] Hayakawa M, Yamaguchi K, Kimura M.Mater Lett, 2004; 58: 2565
[8] Elder K R, Katakowski M, Haataja M, Grant M.Phys Rev Lett, 2002; 88: 245701
[9] Elder K R, Grant M. Phys Rev, 2004; 70E: 51605
[10] Stefanovic P, Haataja M, Provatas N.Phys Rev, 2009; 80E: 046107
[11] Berry J, Grant M, Elder K R.Phys Rev, 2006; 73E: 31609
[12] Pan S Y, Zhu M F.Acta Phys Sin, 2012; 61: 228102
[12] (潘诗琰, 朱鸣芳. 物理学报, 2012; 61: 228102)
[13] Chen Y, Kang X H, Li D Z.Acta Phys Sin, 2009; 58: 390
[13] (陈 云, 康秀红, 李殿中. 物理学报, 2009; 58: 390)
[14] Gao Y J, Luo Z R, Zhang S Y, Huang C G.Acta Metall Sin, 2010; 46: 1473
[14] (高英俊, 罗志荣, 张少义, 黄创高. 金属学报, 2010; 46: 1473)
[15] Yang T, Chen Z, Dong W P.Acta Metall Sin, 2011; 47: 1301
[15] (杨 涛, 陈 铮, 董卫平. 金属学报, 2011; 47: 1301)
[16] Ren X, Wang J C, Yang Y J, Yang G C.Acta Phys Sin, 2010; 59: 3595
[16] (任 秀, 王锦程, 杨玉娟, 杨根仓, 物理学报, 2010; 59: 3595 )
[17] Gao Y J, Wang J F, Luo Z R, Lu Q H, Liu Y. Chin J ComputPhys, 2013; 30: 577
[17] (高英俊, 王江帆, 罗志荣, 卢强华, 刘 瑶. 计算物理, 2013; 30: 577)
[18] Elder K R, Huang Z, Provatas N.Phys Rev, 2010; 81E: 11602
[19] Yu Y M, Backofen R, Voigt A.J Cryst Growth, 2011; 318: 18
[20] Elder K R, Rossi G, Kanerva P, Sanches F, Ying S C, Granato E, Achim C V, Ala-Nissila T.Phys Rev Lett, 2012; 108: 226102
[21] Gao Y J, Luo Z R, Huang C G, Lu Q H, Lin K.Acta Phys Sin, 2013; 62: 050507
[21] (高英俊, 罗志荣, 黄创高, 卢强华, 林 葵. 物理学报, 2013; 62: 050507)
[22] Greenwood M, Rottler J, Provatas N. Phys Rev, 2011; 83B: 031601
[23] Berry J, Elder K R, Grant M. Phys Rev, 2008; 77B: 224114
[24] Gao Y J, Luo Z R, Huang L L, Lin K.Chin J Nonferrous Met, 2013; 23: 1892
[24] (高英俊, 罗志荣, 黄礼琳, 林 葵. 中国有色金属学报, 2013; 23: 1892)
[25] Chen L Q, Shen J.Comput Phys Commun, 1998; 108: 147
[26] Hirouchi T, Takaki T, Tomita Y.Int J Mech Sci, 2010; 52: 309
[27] Gao Y J, Luo Z R, Hu X Y, Huang C G.Acta Metall Sin, 2010; 46: 1161
[27] (高英俊, 罗志荣, 胡项英, 黄创高. 金属学报, 2010; 46: 1161)
[28] Gao Y J, Luo Z R, Huang L L, Hu X Y.Acta Metall Sin, 2012; 48: 1215
[28] (高英俊, 罗志荣, 黄礼琳, 胡项英. 金属学报, 2012; 48: 1215)
[29] Wu K A, Voorhees P W.Acta Mater, 2012; 60: 407
[30] Mills M J, Daw M S, Foiles S M.Ultramicroscopy, 1994; 56: 79
[31] Shao Y F, Yao X, Zhao X, Wang S Q.Chin Phys, 2012; 21B: 083101
[1] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[2] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[3] 徐永生, 张卫刚, 徐凌超, 但文蛟. 铁素体晶间变形协调与硬化行为模拟研究[J]. 金属学报, 2023, 59(8): 1042-1050.
[4] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[5] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[6] 万涛, 程钊, 卢磊. 组元占比对层状纳米孪晶Cu力学行为的影响[J]. 金属学报, 2023, 59(4): 567-576.
[7] 李昕, 江河, 姚志浩, 董建新. O原子对高温合金基体NiCoNiCr晶界作用的理论计算分析[J]. 金属学报, 2023, 59(2): 309-318.
[8] 王凯, 晋玺, 焦志明, 乔珺威. CrFeNi中熵合金在宽温域拉伸条件下的力学行为与变形本构方程[J]. 金属学报, 2023, 59(2): 277-288.
[9] 杨杜, 白琴, 胡悦, 张勇, 李志军, 蒋力, 夏爽, 周邦新. GH3535合金中晶界特征对碲致脆性开裂影响的分形分析[J]. 金属学报, 2023, 59(2): 248-256.
[10] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[11] 刘路军, 刘政, 刘仁辉, 刘永. Nd90Al10 晶界调控对晶界扩散磁体磁性能和微观结构的影响[J]. 金属学报, 2023, 59(11): 1457-1465.
[12] 王楠, 陈永楠, 赵秦阳, 武刚, 张震, 罗金恒. 应变速率对X80管线钢铁素体/贝氏体应变分配行为的影响[J]. 金属学报, 2023, 59(10): 1299-1310.
[13] 任师浩, 刘永利, 孟凡顺, 祁阳. 应变工程中Bi(111)薄膜的半导体-半金属转变及其机理[J]. 金属学报, 2022, 58(7): 911-920.
[14] 王江伟, 陈映彬, 祝祺, 洪哲, 张泽. 金属材料的晶界塑性变形机制[J]. 金属学报, 2022, 58(6): 726-745.
[15] 高钰璧, 丁雨田, 李海峰, 董洪标, 张瑞尧, 李军, 罗全顺. 变形速率对GH3625合金弹-塑性变形行为的影响[J]. 金属学报, 2022, 58(5): 695-708.