Please wait a minute...
金属学报  2013, Vol. 49 Issue (8): 1003-1011    DOI: 10.3724/SP.J.1037.2013.00078
  论文 本期目录 | 过刊浏览 |
超塑性拉伸断裂分析
管志平,马品奎,宋玉泉
吉林大学超塑性与塑性研究所, 长春 130022
ANALYSIS OF FRACTURE DURING SUPERPLASTIC TENSION
GUAN Zhiping, MA Pinkui, SONG Yuquan
Superplastic and Plastic Research Institute, Jilin University, Changchun 130022
引用本文:

管志平,马品奎,宋玉泉. 超塑性拉伸断裂分析[J]. 金属学报, 2013, 49(8): 1003-1011.
GUAN Zhiping, MA Pinkui, SONG Yuquan. ANALYSIS OF FRACTURE DURING SUPERPLASTIC TENSION[J]. Acta Metall Sin, 2013, 49(8): 1003-1011.

全文: PDF(630 KB)  
摘要: 

材料的拉伸断裂问题同时也是断裂延伸率问题,而材料的超塑性以其大的断裂延伸率为主要特征.自超塑性现象发现以来, 人们从来没有停止过对超塑性大延伸率变形本质的探索.这方面的文献特别多, 但主要集中在超塑性微观机理和变形机制方面,而对于超塑性变形力学规律方面的研究则相对较少. 实际上,超塑性大延伸率与其力学稳定性密切相关, 并由其特殊的断裂机制所决定.因此, 本文首先从超塑性 的微观断裂机制出发,着重回顾超塑性孔洞的形核、生长和连接的微观物理机制的研究进展. 然后,主要从宏观力学稳定变形出发,回顾国内外有关超塑性拉伸过程中颈缩的产生和发展导致的断裂延伸率或极限应变的力学分析的研究工作, 并作了相应的归类和评述.结论指出: 尽管超塑性断裂机制的研究很多, 但 是缺乏统一的认识,仍需要长期的基础性工作.目前的首要任务就是从超塑性拉伸宏观力学规律出发,依据现代数值分析技术深入研究其力学稳定变形机制,以便揭示超塑性大延伸率现象的力学本质. 在分析过程中,应采用精确定量的本构方程, 并考虑变形路径等外部条件的影响.

关键词 超塑性拉伸断裂延伸率极限应变孔洞    
Abstract

The matter of fracture in tension is also the issue of fracture elongation. The ability of superplasticity of materials is mainly characterized by excellent fracture elongations. Since first superplastic phenomenon was recorded, the investigations of superplasticity have not halted. Most of the existing literatures focused on physical or microstructural mechanisms while less attention was paid to mechanical theories on the superplastic deformation. However, superplastic phenomena on large elongation in superplastic tension are closely related to the mechanical stability and are finally dependent on the special fracture mechanism. Correspondingly, in this article, the studies of fracture mechanism of the superplastic deformation are reviewed, which involved nucleation, growth and coalescence of cavities. Then, the literatures related to the mechanical stability in superplastic tension are classified and reviewed, which involved the mechanical analysis and numerical simulation of the fracture elongation or the limit strain induced from neck’s initiation and development. The conclusions indicate that there has yet been no united and confirmed opinion on the superplastic fracture mechanism which has numerous versions from the microstructural or physical view, and the superplastic fracture mechanism would have maken no significant progress unless many long-term investigations will be carried out in the future. In order to interpret the essence of large fracture elongation, the current task should be thoroughly investigate the mechanical stability in superplastic tension based on the advanced technology of numeric analysis. In numeric analysis, the precise and quantitative constitutive equation should be adopted and the deformation conditons involving strain paths should be taken into account.

Key wordsSuperplasticity    tension    fracture elongation    limit strain, cavity
收稿日期: 2013-02-04     
基金资助:

国家自然科学基金项目51005098和51005099及吉林省自然科学基金项目201115015资助

作者简介: 管志平, 男, 1975年生, 副教授

[1] Sato E, Kuribayashi K.  ISIJ Int, 1993; 33: 825 [2] Langdon T G.  Met Sci, 1982; 16: 175
[3] Lian J, Suery M.  Mater Sci Technol, 1986; 2: 1093
[4] Lin Z R.  The Principle and Application of Metal Superplastic Formation.Beijing: The Aviation Industury Press, 1990: 24
(林兆荣. 金属超塑性成形原理及应用. 北京: 航空工业出版社, 1990: 24)
[5] Ghandi C, Ghosh A K. In: Lee E W, Chia E H, Kim N J eds.,Light Weight Alloys of Aerospace Applications. Warrendale:The Minerals and Materials Society, 1989: 419
[6] Lombard C M, Ghosh A K, Semiatin S L.  Metall Mater Trans, 2001; 32A: 2769
[7] Zaki M, Suery M.  Proc Current Advances in Mechanical Design and Production: 5th MDP Conference, Cairo: University Egypt, 1991: 467
[8] Kaibyshev R, Sakai T.  Scr Mater, 2001; 45: 1373
[9] Chokshi A H, Langdon T G.  Acta Metall, 1989; 37: 715
[10] Jiang X G, Earthman J C.  J Mater Sci, 1994; 29: 5499
[11] Gouthama, Padmanabhan K A.  Scr Mater, 2003; 49: 761
[12] Raj R, Ashby M F.  Metall Trans, 1971; 2: 1113
[13] Shei S A, Longdon T G.  J Mater Sci, 1978; 13: 1084
[14] Ghosh A K. In: Hamilton C H, Paton N E eds., Superplastic Forming of Structure Alloys. Warrendale: Metall Soc of AIME, 1982: 85
[15] Ma Y, Langdon T G. In: Hamilton C H, Paton N E eds.,Superplasticity and Superplastic Forming.Warrendale: The Minerals and Materials Society, 1988: 173
[16] Chokshi A H, Langdon T G.  Acta Metall, 1987; 35: 1089
[17] Furushiro N, Langdon T G. In: Hamilton C H, Paton N E eds., Superplasticity and Superplastic Forming. Warrendale: The Minerals and Materials Society, 1988: 197
[18] Stowell M J. In: Hamilton C H, Paton N E eds., Superplastic Forming of Structure Alloys. Warrendale:Metall Soc of AIME, 1982: 321
[19] Stowell M J.  Met Sci, 1983; 17: 92
[20] Stowell M J, Livesey D W.  Acta Metall, 1984; 32: 35
[21] Needleman A, Rice J R.  Acta Metall, 1980; 28: 1315
[22] Rice J R.  Acta Metall, 1981; 29: 675
[23] Cocks A C, Ashby M F.  Met Sci, 1980; 14: 395
[24] Wilkinson D S, Caceres C H.  Mater Sci Technol, 1986; 2: 1086
[25] Cocks A C, Ashby M F.  Prog Mater Sci, 1982; 27: 189
[26] Hamilton C H, Bampton C C, Paton N E. In: Hamilton C H,Paton N E eds.,  Superplastic Forming of Structure Alloys.Warrendale: Metall Soc of AIME, 1982: 173
[27] Ragab A R.  Mater Sci Eng, 2007; A454--455: 614
[28] Thomason P F.  Ductile Fracture of Metals. Oxford: Pergamon Press, 1990: 1
[29] Ragab A R.  Acta Mater, 2004; 52: 3997
[30] Chen I W, Xue L A.  J Am Ceram Soc, 1990; 73: 2585
[31] Kim W J, Wolfenstine J, Sherby O D.  Acta Metall Mater, 1991; 39: 199
[32] Rybacki E, Wirth R, Dresen G.  J Geophys Res--Solid Earth, 2010; 115: B08209
[33] Mandelbrot B B.  The Fractal Geometry of Nature. New York: Freeman, 1983: 1
[34] Mandelbrot B B, Passoja D E, Paullay A L.  Nature, 1984; 308: 721
[35] Jiang X G, Chu W Y, Hsiao C M.  Acta Metall Mater, 1994; 42: 105
[36] Jiang X G, Cui J Z, Ma L X.  Acta Metall Mater, 1992; 40: 1267
[37] Kaibyshev A, Pshenichnyuk A I.  Acta Mater, 1998; 46: 4911
[38] Kaibyshev A, Pshenichnyuk A I.  Mater Sci Eng, 2005; A410--411: 105
[39] Consid$\grave{\rm e$re A.  Annales Ponts Chauss$\acute{e$es, 1885; 9: 574
[40] Backofen W A, Turner I R, Avery D H.  Trans ASM Quart, 1964; 57: 980
[41] Avery D H, Stuart J M. In: Burke J J, Weiss V eds., Surface and Interfaces II. New York: Syracuse University Press, 1968: 371
[42] Morrison W B.  Trans Metall Soc AIME, 1968; 242: 2221
[43] Holt D L. In: Burke J J, Weiss V eds., Ultrafine Grain Metals. New York: Syracuse University Press, 1970: 355
[44] Matsuo M, translated by Kang D C.  Superplasticity and Technology of Metal Forming. Beijing: China Machine Press, 1985: 36
(宫川松男~著, 康达昌~译. 超塑性和金属加工技术. 北京: 机械工业出版社, 1985: 36)
[45] Nichols A.  Acta Metall, 1980; 28: 663
[46] Liu C.  JSTP, 1983; 270: 692
(刘勤. 塑性と加工, 1983; 270: 692)
[47] Liu C, Zhou S Y.  Mater Sci Prog, 1988; 2: 1
(刘勤, 周善佑. 材料科学进展, 1988; 2: 1)
[48] Liu C.  Superplasticity of Metal. Shanghai: Shanghai Jiao Tong University Press, 1989: 102
(刘勤, 金属的超塑性. 上海: 上海交通大学出版社, 1989: 102)
[49] Liu C.  Metall Trans, 1986; 17A: 674
[50] Song Y Q, Gao B E, Wang X W.  Sci China, 1998; 28E: 193
(宋玉泉, 高柏恩, 王习文. 中国科学, 1998; 28E: 193)
[51] Hart E W.  Acta Metall, 1967; 15: 351
[52] Campbell D.  J Mech Phys Solids, 1967; 15: 359
[53] Jonas J J, Christodoulou N.  Scr Metall, 1978; 12: 393
[54] Jonas J J, Christodoulou N.  Scr Metall, 1978; 12: 565
[55] Song Y Q, Liu S M, Hou L.  Chin Sci Bull, 2002; 47: 717
(宋玉泉, 刘术梅, 侯磊. 科学通报, 2002; 47: 717)
[56] Hasegawa T, Okazaki K.  Mater Sci Eng, 2001; A297: 266
[57] Kim W J, Lee B H.  Mater Sci Eng, 2010; A527: 5984
[58] Samantaray D, Mandal S, Bhaduri A K.  Mater Des, 2011; 32: 716
[59] Song Y Q, Suo Z L, Guan Z P, Liu Y.  Acta Metall Sin, 2006; 42: 337
(宋玉泉, 索忠林, 管志平, 刘颖. 金属学报, 2006; 42: 337)
[60] Song Y Q.  Chin J Mech Eng, 2003; 39: 64
(宋玉泉. 机械工程学报, 2003; 39: 64)
[61] Ghosh A K.  Acta Metall, 1977; 25: 1413
[62] Kocks U F, Jonas J J, Mecking H.  Acta Metall, 1979; 27: 419
[63] Lin I H, Hirth J P, Hart E W.  Acta Metall, 1981; 29: 819
[64] Lian J S.  Chin J Mech Eng, 1982; 18: 21
(连建设. 机械工程学报, 1982; 18: 21)
[65] Semiatin S L, Jonas J J.  Formability and Workability of Metals: Plastic Instability and Flow Localization. Metals Park, Ohio: ASM, 1984: 155
[66] Ghosh A K, Ayres R.  Metall Mater Trans, 1976; 7A: 1589
[67] Hutchinson W, Neale K W.  Acta Metall, 1977; 25: 839
[68] Lian J S, Baudelet B.  Met Sci Technol, 1990; 9: 83
(连建设, Baudelet B. 金属科学与工艺, 1990; 9: 83)
[69] Giroux P F, Dalle F, Sauzay M, Malaplate J, Fournier B, Gourgues--Lorenzon A F. Mater Sci Eng, 2010; A527: 3984
[70] Duncombe E.  Int J Solids Struct, 1974; 10: 1445
[71] Marciniak Z, Kuczynski K.  Int J Mech Sci, 1967; 9: 609
[72] Lian J S, Zhang J R.  Acta Metall Sin, 1985; 21: 88
(连建设, 张吉人. 金属学报, 1985; 21: 88)
[73] Lian J, Baudelet B.  Mater Sci Eng, 1986; 84: 157
[74] Song Y Q, Guan Z P, Wang M H, Song J W.  Sci China, 2007; 37E: 80
(宋玉泉, 管志平, 王明辉, 宋家旺. 中国科学, 2007; 37E: 80)
[75] Zhang J R, Lian J S.  Met Sci Technol, 1984; 3: 17
(张吉人, 连建设. 金属科学与工艺, 1984; 3: 17)
[76] Hamilton C H.  Metall Trans, 1989; 20A: 2783
[77] Kannan K, Hamilton C H.  Scr Mater, 1997; 37: 455
[78] Kannan K, Hamilton C H.  Acta Mater, 1998; 46: 5533
[79] Burke M A, Nix W D.  Acta Metall, 1975: 23: 793
[80] Semiatin S L, Ghosh A K, Jonas J J.  Metall Trans, 1985; 16A: 2291
[81] Schuh C, Dunand D C.  J Mater Res, 2001; 16: 865
[82] Miles M P, Daehn G S, Wagoner R H.  Metall Mater Trans, 2003; 34A: 2559
[83] Manonukul, Dunne F P.  Key Eng Mater, 1996; 118--119: 123
[84] Dunne F P.  Int J Plasticity, 1998; 14: 413
[85] Dunne F P, Kim T.  Proc R Soc Lond, 1999; 455A: 719
[86] Wu Y Q, Zhang K S.  Acta Mech Solida Sin, 2003; 24: 313
(吴艳青, 张克实. 固体力学学报, 2003; 24: 313)
[87] Takuji O, Tomei H.  Trans Iron Steel Inst Jpn, 1986; 72: S1624
 (岡部卓治, 畑山東明. 日本鐡鋼協會々誌, 1986; 72: S1624)
[88] Lian J, Baudelet B.  Scr Metall, 1987; 21: 331
[89] Song Y Q, Cheng Y C, Liu Y.  Sci China, 2000; 30E: 200
(宋玉泉, 程永春, 刘颖. 中国科学, 2000; 30E: 200)
[90] Song Y Q, Hai J T, Guan Z P.  Sci China, 2001; 31E: 103
(宋玉泉, 海锦涛, 管志平. 中国科学, 2001; 31E: 103)
[91] Song Y Q, Cheng Y C, Wang X W.  Chin J Mech Eng, 2000; 36: 33   
 (宋玉泉, 程永春, 王习文. 机械工程学报, 2000; 36: 33)
[92] Song Y Q, Cheng Y C, Liu S M.  Chin J Mech Eng, 2001; 37: 5   
 (宋玉泉, 程永春, 刘术梅. 机械工程学报, 2001; 37: 5)

[1] 赵亚峰, 刘苏杰, 陈云, 马会, 马广财, 郭翼. 铁素体-贝氏体双相钢韧性断裂过程中的夹杂物临界尺寸及孔洞生长[J]. 金属学报, 2023, 59(5): 611-622.
[2] 王迪, 贺莉丽, 王栋, 王莉, 张思倩, 董加胜, 陈立佳, 张健. Pt-Al涂层对DD413合金高温拉伸性能的影响[J]. 金属学报, 2023, 59(3): 424-434.
[3] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[4] 孙腾腾, 王洪泽, 吴一, 汪明亮, 王浩伟. 原位自生2%TiB2 颗粒对2024Al增材制造合金组织和力学性能的影响[J]. 金属学报, 2023, 59(1): 169-179.
[5] 田妮, 石旭, 刘威, 刘春城, 赵刚, 左良. 预拉伸变形对欠时效7N01铝合金板材疲劳断裂的影响[J]. 金属学报, 2022, 58(6): 760-770.
[6] 郑椿, 刘嘉斌, 江来珠, 杨成, 姜美雪. 拉伸变形对高氮奥氏体不锈钢显微组织和耐腐蚀性能的影响[J]. 金属学报, 2022, 58(2): 193-205.
[7] 赵永好, 毛庆忠. 纳米金属结构材料的韧化[J]. 金属学报, 2022, 58(11): 1385-1398.
[8] 曹富荣, 丁鑫, 项超, 尚会会. Mg-4.4Li-2.5Zn-0.46Al-0.74Y合金高温变形流动应力、组织演变与本构分析[J]. 金属学报, 2021, 57(7): 860-870.
[9] 王慧远, 夏楠, 布如宇, 王珵, 查敏, 杨治政. 低合金化高性能变形镁合金研究现状及展望[J]. 金属学报, 2021, 57(11): 1429-1437.
[10] 和思亮, 赵云松, 鲁凡, 张剑, 李龙飞, 冯强. 热等静压对铸态及固溶态第二代镍基单晶高温合金显微缺陷及持久性能的影响[J]. 金属学报, 2020, 56(9): 1195-1205.
[11] 刘先锋, 刘冬, 刘仁慈, 崔玉友, 杨锐. Ti-43.5Al-4Nb-1Mo-0.1B合金的包套热挤压组织与拉伸性能[J]. 金属学报, 2020, 56(7): 979-987.
[12] 于家英, 王华, 郑伟森, 何燕霖, 吴玉瑞, 李麟. 热浸镀锌高强汽车板界面组织对其拉伸断裂行为的影响[J]. 金属学报, 2020, 56(6): 863-873.
[13] 李源才, 江五贵, 周宇. 纳米孔洞对单晶/多晶Ni复合体拉伸性能的影响[J]. 金属学报, 2020, 56(5): 776-784.
[14] 余晨帆, 赵聪聪, 张哲峰, 刘伟. 选区激光熔化316L不锈钢的拉伸性能[J]. 金属学报, 2020, 56(5): 683-692.
[15] 张哲峰,邵琛玮,王斌,杨浩坤,董福元,刘睿,张振军,张鹏. 孪生诱发塑性钢拉伸与疲劳性能及变形机制[J]. 金属学报, 2020, 56(4): 476-486.