Please wait a minute...
金属学报  2011, Vol. 47 Issue (4): 429-434    DOI: 10.3724/SP.J.1037.2010.00448
  论文 本期目录 | 过刊浏览 |
ZnHA/TiO2复合涂层的制备及生物相容性
张静莹1, 2), 齐民3), 杨大颐3), 艾红军1)
1) 中国医科大学口腔医学院, 沈阳 110001
2) 大连大学医学院, 大连 116622
3) 大连理工大学材料科学与工程学院, 大连 116024
PREPARATION AND BIOCOMPATIBILITY OF ZnHA/TiO2 HYBRID COATING
ZHANG Jingying1, 2), QI Min3), YANG Dayi3), AI Hongjun1)
1) School of Stomatology, China Medical University, Shenyang 110001
2) School of Medicine, Dalian University, Dalian 116622
3) School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024
引用本文:

张静莹 齐民 杨大颐 艾红军. ZnHA/TiO2复合涂层的制备及生物相容性[J]. 金属学报, 2011, 47(4): 429-434.
, , , . PREPARATION AND BIOCOMPATIBILITY OF ZnHA/TiO2 HYBRID COATING[J]. Acta Metall Sin, 2011, 47(4): 429-434.

全文: PDF(739 KB)  
摘要: 为改善羟基磷灰石(HA)涂层与Ti基体的结合性能及成骨性能, 在纯Ti表面先通过微弧氧化方法形成多孔TiO2, 然后通过溶胶-凝胶法在其上形成ZnHA生物涂层. 利用SEM和XRD观察和分析样品的表面形貌和物相组成, 采用火焰原子吸收分光光度法测量Zn2+的释放浓度. 将MG-63细胞直接接种于样品表面, 评价成骨细胞在样品表面的黏附和增殖. 噻唑蓝(MTT)比色分析结果表明, 细胞在ZnHA/TiO2-2和ZnHA/TiO2-3涂层的样品表面增殖率比对照组(HA)显著增加, 倒置荧光显微镜下可观察到细胞在改性样品表面黏附和伸展良好. 由此表明, 带有ZnHA/TiO2复合涂层的Ti种植体应具有更好的机械结合性能和生物相容性.
关键词 ZnTiTiO2羟基磷灰石成骨细胞生物相容性    
Abstract:A zinc-containing hydroxyapatite (ZnHA)/titania (TiO2) hybrid coating is developed to improve the mechanical character and biocompatibility of titanium (Ti) implants. The ZnHA layer on Ti via sol-gel method after treated by micro-arc oxidation (MAO) to produce an ZnHA/TiO2 porous titania coating on Ti implants. The chemical composition and physical structure of the modified surface layers were characterized by X-ray photoelectron spectroscopy (XPS) as well as scanning electron microscope (SEM). At the same time, in vitro co-culture assays were performed to evaluate the cell morphology, adhesion and proliferation of MG-63 cells to the modified titanium. The cells micro morphology on the ZnHA/TiO2 coatings were more polygonal compared with round than that on HA/TiO2 coatings by SEM. It was confirmed by Fluorescence microscopy observations that the osteoblast-like cells on the hybrid coating layer adhesion and spread favorably. The results in this work suggest that ZnHA/TiO2 hybrid coatings on Ti substrates can function as an implant with good mechanical character and biocompatibility.
Key wordsZn    Ti    TiO2    hydroxyapatite    osteoblast    biocompatibility
收稿日期: 2010-09-06     
ZTFLH: 

TG146

 
作者简介: 张静莹, 女, 1978年生, 讲师, 博士
[1] Hing K A, Best S M, Bonfield W. J Mater Sci: Mater Med, 1999; 10: 135

[2] Kay J F. Dent Clin North Am, 1992; 36: 1

[3] Elliott J C. Structure and Chemistry of the Apatites and Other Calcium Orthophosphates. Amsterdam: Elsevier, 1994: 387

[4] Koutsopoulos S. J Biomed Mater Res, 2002; 62: 600

[5] Ito A, Otsuka M, Kawamura H, Ikeuchi M, Ohgushi H, Sogo Y, Ichinose N. Curr Appl Phys, 2005; 5: 402

[6] Legeros R Z, Legeros J, Mijares D. US Pat, 20090068285, 2009

[7] Bigi A, Foresti E, Gandolfi M, Gazzano M, Roveri N. J Inorg Biochem, 1995; 58: 49

[8] Miyaji F, Kono Y, Suyama Y. Mater Res Bull, 2005; 40: 209

[9] Hayakawa S, Ando K, Tsuru K, Osaka A. J Am Ceram Soc, 2007; 90: 565

[10] Li M O, Xiao X, Liu R, Chen C, Huang L Z. J Mater Sci: Mater Med, 2008; 19: 797

[11] Ramaswamy Y, Wu C T, Zhou H, Zreiqat H. J Acta Biomaterial, 2008; 4: 1487

[12] Yao Z Q, Ivanisenko Y, Diemant T, Caron A, Chuvilin A, Jiang J Z, Valiev R Z, Qi M, Fecht H J. Acta Biomater, 2010; 6: 2816

[13] Cheng K, WengWJ, Han G R, Du P Y, Shen G, Yang J, Ferreira J M F. Mater Chem Phys, 2003; 78: 767

[14] Le Gue’hennec L, Soueidan A, Layrolle P, Amouriq Y S. Dent Mater, 2007; 23: 844

[15] Buser D, Schenk R K, Steinemann S, Fiorellini J P, Fox C H, Stich H. J Biomed Mater Res, 1991; 25: 889

[16] Albrektsson T, Wennerberg A. Int J Prosthodont, 2004; 17: 536

[17] Wang Y M, Liang B L, Lei T Q, Guo L X. Surf Coat Technol, 2006; 201: 82

[18] Li L H, Kong Y M, Kim H W, Kim Y W, Kim H E, Heo S J, Koak J Y. Biomaterials, 2004; 25: 2867

[19] Ryu H S, Song W H, Hong S H. Surf Coat Technol, 2008; 202: 1853

[20] Nie X, Leyland A, Matthews A, Jiang J C, Meletis E I. J Biomed Mater Res, 2001; 57: 612

[21] Vaquila I, Vergara L I, Paaaeggi M C G, Vidal R A, Ferron J. Surf Coat Technol, 1999; 122: 67

[22] de Carlos A, Borrajo J P, Serra J, Gonzalez P, Leon B. J Mater Sci: Mater Med, 2006; 17: 523

[23] Yamamoto A, Honma R, Sumita M. J Biomed Mater Res, 1998; 39: 331

[24] Beyersmann D, Haase H. Biomaterials, 2001; 14: 331

[25] Yamasaki S, Sakata–Sogawa K, Hasegawa A, Suzuki T, Kaku K, Sato E, Kurosaki T, Yamashita S, Tokunaga M, Nishida K, Hirano T. J Cell Biology, 2007; 177: 637

[26] Yang X F, Xi T F. J Biomed Eng, 2001; 18: 123
[1] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[2] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[3] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[4] 许林杰, 刘徽, 任玲, 杨柯. CuNi-Ti合金抗支架内再狭窄与耐蚀性能的影响[J]. 金属学报, 2023, 59(4): 577-584.
[5] 王鲁宁, 尹玉霞, 石章智, 韩倩倩. 医用可降解锌合金的生物相容性评价研究进展[J]. 金属学报, 2023, 59(3): 319-334.
[6] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.
[7] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[8] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[9] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[10] 高晗, 刘力, 周笑宇, 周心怡, 蔡汶君, 周泓伶. Ti6Al4V表面微纳结构的制备及生物活性[J]. 金属学报, 2023, 59(11): 1466-1474.
[11] 李小兵, 潜坤, 舒磊, 张孟殊, 张金虎, 陈波, 刘奎. W含量对Ti-42Al-5Mn-xW合金相转变行为的影响[J]. 金属学报, 2023, 59(10): 1401-1410.
[12] 杨超, 卢海洲, 马宏伟, 蔡潍锶. 选区激光熔化NiTi形状记忆合金研究进展[J]. 金属学报, 2023, 59(1): 55-74.
[13] 孙腾腾, 王洪泽, 吴一, 汪明亮, 王浩伟. 原位自生2%TiB2 颗粒对2024Al增材制造合金组织和力学性能的影响[J]. 金属学报, 2023, 59(1): 169-179.
[14] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[15] 陈斐, 邱鹏程, 刘洋, 孙兵兵, 赵海生, 沈强. 原位激光定向能量沉积NiTi形状记忆合金的微观结构和力学性能[J]. 金属学报, 2023, 59(1): 180-190.