Please wait a minute...
金属学报  2011, Vol. 47 Issue (12): 1600-1604    DOI: 10.3724/SP.J.1037.2011.00500
  论文 本期目录 | 过刊浏览 |
电解法处理压载水对316L不锈钢腐蚀行为的影响
刘光洲,王建明,张鉴清,曹楚南
浙江大学化学系,  杭州 310027
EFFECT OF ELECTROLYTIC TREATMENT OF BALLAST WATER ON THE CORROSION BEHAVIOR OF 316L STAINLESS STEEL
LIU Guangzhou, WANG Jianming, ZHANG Jianqing, CAO Chunan
Chemistry Department, Zhejiang University, Hangzhou 310027
引用本文:

刘光洲 王建明 张鉴清 曹楚南. 电解法处理压载水对316L不锈钢腐蚀行为的影响[J]. 金属学报, 2011, 47(12): 1600-1604.
, , , . EFFECT OF ELECTROLYTIC TREATMENT OF BALLAST WATER ON THE CORROSION BEHAVIOR OF 316L STAINLESS STEEL[J]. Acta Metall Sin, 2011, 47(12): 1600-1604.

全文: PDF(559 KB)  
摘要: 通过监测处理前后海水环境参数的变化, 利用开路电位-时间曲线、电化学阻抗谱及极化曲线等电化学方法, 研究了316L不锈钢在电解处理前后的压载水中的腐蚀行为. 结果表明, 在处理海水中,316L不锈钢的耐点蚀性能优于天然海水, 腐蚀倾向减小.处理海水中316L不锈钢的开路电位正移约0.4 V, 电化学反应电阻明显增大,钝化膜的击穿电位正移0.37 V以上, 316L不锈钢的耐蚀性增强.这可能与电解处理后海水中含有ClO$^{-}$, Cl$_{2}$和HClO等强氧化性物质,导致316L不锈钢的钝化膜增厚、变得更加致密有关.
关键词 压载水 电解处理 316L不锈钢 点蚀 电化学方法    
Abstract:The introduction of invasive marine species into new environments by the ballast water of ships has been identified as one of the four greatest threats to the world’s oceans. Many technologies have been developed for ballast water treatment among which electrolytic treatment method has been taken as the most promising one. However, the corrosion problem of metals in treated seawater was seriously concerned by international maritime organization (IMO) and ship owners, especially the corrosion of 316L stainless steel which is widely used in the monitoring equipments of the ballast system of ships. In this study, the variation of environmental parameters of the seawater before and after electrolytic treatment was monitored. The corrosion behaviors of 316L stainless steel in both natural and treated seawater were investigated by electrochemical methods such as open–circuit potential (EOCP) measurements, electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization. The results showed that the pH value of the seawater increased and the dissolved oxygen content decreased slightly after electrolytic treatment, and the contents of dissolved organic carbon and particulate organic carbon decreased significantly in treated seawater. The corrosion test results showed that the resistance of 316L stainless steel to pitting corrosion was enhanced in treated seawater. Compared to the system in natural seawater, the open–circuit potential of the steel in treated seawater shifted about 0.4 V positively, and charge transfer resistance of the steel greatly increased. The breakdown potential of passivation films in treated seawater positively shifted more than 0.37 V. Our experimental results suggested that the corrosion resistance of 316L stainless steel in treated seawater was improved, which was ascribed to the thickening and compactness of the passivation film formed in treated seawater. It is safe for 316L stainless steel to be used in treated ballast water with the total residual chlorine (TRC) concentration of 9.50 mg/L.
Key wordsballast water    electrolytic treatment    316L stainless steel    pitting corrosion    electrochemical method
收稿日期: 2011-08-04     
ZTFLH: 

O646.6

 
作者简介: 刘光洲, 男, 1969年生, 博士生
[1] McCluskey D K, Holdø A E, Calay R K. J Mar Des Oper, 2005; B9: 21

[2] Bowmer T, Linders J. J Marit Aff, 2010; 9: 223

[3] Tsolaki E, Diamadopoulos E. J Chem Technol Biotechnol, 2010; 85(1): 19

[4] Kim S J, Jang S K. Trans Nonferrous Met Soc China, 2009; 19(Spec.): 50

[5] Wright D A, Dawson R, Cutler S J, Cutler H G, Orano–Dawson C E, Graneli E. Water Res, 2007; 41: 1294

[6] Gray D K, Duggan I C, MacIsaac H J. Mar Pollut Bull, 2006; 52: 689

[7] Tamburri M N, Wasson K, Matsuda M. Biol Conserv, 2002; 103: 331

[8] Tang Z J, Butkus M A, Xie Y F F. Chemosphere, 2009; 74: 1396

[9] Dang K, Sun P T, Xiao J K, Song Y X. J Mar Sci Appl, 2006; 5(4): 58

[10] Boldor D, Balasubramanian S, Purohit S, Rusch K A. Environ Sci Technol, 2008; 42: 4121

[11] Oemcke D, van Leeuwen J. Ozone Sci Eng, 2004; 26: 389

[12] Song Y X, Dang K, Chi F H, Guan D L, Yin P H. J Dalian Marit Univ, 2005; 31(3): 45

(宋永欣, 党坤, 池方华, 关德林, 殷佩海. 大连海事大学学报, 2005; 31(3): 45)

[13] Liu G Z, Wang J M, Zhang J Q, Cao C N. Acta Metall Sin, 2010; 46: 1093

(刘光洲, 王建明, 张鉴清, 曹楚南. 金属学报, 2010; 46: 1093)

[14] Havn T. Corros Manag, 2001; 8(3): 12

[15] Singh A K, Singh G. Anti–corros Meth Mater, 2002; 49: 417

[16] Li J C, Zhao M, Jiang Q. Mater Perform, 2006; 2: 48

[17] Working Committee of National Administration for Environmental Protection. Analytical Methods for Water and Sewage Monitoring. 3rd Ed., Beijing: China Environmental

Science Publishing House, 1997: 345

(国家环境保护局编委会. 水和废水监测分析方法(第三版), 北京: 中国环境科学出版社, 1997: 345)

[18] Fang H H P, Chan K Y, Xu L C. Biotech Lett, 2000; 22: 801

[19] Vijay P, Upadhyaya A. Trans Ind Inst Met, 2008; 61: 255

[20] Shibata T. Corros Sci, 2007; 49(1): 20

[21] Munro I. Mater Perform, 2005; 44(7):48

[22] Compere C, Jaffre P, Festy D. Corros Sci, 1996; 52: 496

[23] Yeon S J, Yoo T J, Hwan G S, Su G L. Met Mater Int, 2009; 15(1): 37

[24] Cai B P, Liu Y H, Tian X J, Li H, Ji R J,Wang F. Corros Sci, 2010; 52: 3235

[25] Zheng L, Neville A. Corrosion, 2009; 65(2): 145

[26] Cao C N, Zhang J Q. An Introduction to Electrochemical Impedance Spectroscopy. Beijing: Science Press, 2002: 76

(曹楚南, 张鉴清. 电化学阻抗谱导论. 北京: 科学出版社, 2002: 76)

[27] Nagarajan S, Raman V, Rajendran N. J Sol Stat Electrochem, 2010; 14: 1197

[28] Al–Muhanna K, Habib K. Desalinat, 2010; 250: 404
[1] 张奇亮, 王玉超, 李光达, 李先军, 黄一, 徐云泽. EH36钢在不同粒径沙砾冲击下的冲刷腐蚀耦合损伤行为[J]. 金属学报, 2023, 59(7): 893-904.
[2] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[3] 孙阳庭, 李一唯, 吴文博, 蒋益明, 李劲. CaMg掺杂下夹杂物对C70S6非调质钢点蚀行为的影响[J]. 金属学报, 2022, 58(7): 895-904.
[4] 吕晨曦, 孙阳庭, 陈斌, 蒋益明, 李劲. 恒电位脉冲技术对317L不锈钢点蚀行为及耐点蚀性能的影响[J]. 金属学报, 2021, 57(12): 1607-1613.
[5] 余晨帆, 赵聪聪, 张哲峰, 刘伟. 选区激光熔化316L不锈钢的拉伸性能[J]. 金属学报, 2020, 56(5): 683-692.
[6] 王力,董超芳,张达威,孙晓光,Thee Chowwanonthapunya,满成,肖葵,李晓刚. 合金元素对铝合金在泰国曼谷地区初期腐蚀行为的影响[J]. 金属学报, 2020, 56(1): 119-128.
[7] 李恺强, 杨璐嘉, 徐云泽, 王晓娜, 黄一. SO42-对模拟孔隙液中Q235B钢筋腐蚀行为的影响[J]. 金属学报, 2019, 55(4): 457-468.
[8] 冯浩,李花兵,路鹏冲,杨纯田,姜周华,武晓雷. 铜绿假单胞菌对CrCoNi中熵合金微生物腐蚀行为的影响[J]. 金属学报, 2019, 55(11): 1457-1468.
[9] 李丹, 李杨, 陈荣生, 倪红卫. 不锈钢网上水热制备NiCo2O4/MoS2纳米复合结构及其在电解水制氢中的应用[J]. 金属学报, 2018, 54(8): 1179-1186.
[10] 刘廷光, 夏爽, 白琴, 周邦新. 316L不锈钢的三维晶粒与晶界形貌特征及尺寸分布[J]. 金属学报, 2018, 54(6): 868-876.
[11] 马歌, 左秀荣, 洪良, 姬颖伦, 董俊媛, 王慧慧. 深海用X70管线钢焊接接头腐蚀行为研究[J]. 金属学报, 2018, 54(4): 527-536.
[12] 刘廷光, 夏爽, 白琴, 周邦新, 陆永浩. 孪晶界在316L不锈钢三维晶界网络中的分布特征[J]. 金属学报, 2018, 54(10): 1377-1386.
[13] 郭舒,韩恩厚,王海涛,张志明,王俭秋. 核电站316L不锈钢弯头应力腐蚀行为的寿命预测[J]. 金属学报, 2017, 53(4): 455-464.
[14] 范林,丁康康,郭为民,张彭辉,许立坤. 静水压力和预应力对新型Ni-Cr-Mo-V高强钢腐蚀行为的影响*[J]. 金属学报, 2016, 52(6): 679-688.
[15] 何岳,向嵩,石维,刘建敏,梁宇,陈朝轶. 冷拔珠光体钢的组织演变对其点蚀行为的影响*[J]. 金属学报, 2016, 52(12): 1536-1544.