Please wait a minute...
金属学报  2018, Vol. 54 Issue (8): 1179-1186    DOI: 10.11900/0412.1961.2018.00001
  本期目录 | 过刊浏览 |
不锈钢网上水热制备NiCo2O4/MoS2纳米复合结构及其在电解水制氢中的应用
李丹1,2, 李杨1,2, 陈荣生1,2, 倪红卫1,2()
1 武汉科技大学钢铁冶金及资源利用省部共建教育部重点实验室 武汉 430081
2 武汉科技大学省部共建耐火材料与冶金国家重点实验室 武汉 430081
Direct Synthesis of NiCo2O4 Nanoneedles and MoS2 Nanoflakes Grown on 316L Stainless Steel Meshes by Two Step Hydrothermal Method for HER
Dan LI1,2, Yang LI1,2, Rongsheng CHEN1,2, Hongwei NI1,2()
1 Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, China
2 State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
引用本文:

李丹, 李杨, 陈荣生, 倪红卫. 不锈钢网上水热制备NiCo2O4/MoS2纳米复合结构及其在电解水制氢中的应用[J]. 金属学报, 2018, 54(8): 1179-1186.
Dan LI, Yang LI, Rongsheng CHEN, Hongwei NI. Direct Synthesis of NiCo2O4 Nanoneedles and MoS2 Nanoflakes Grown on 316L Stainless Steel Meshes by Two Step Hydrothermal Method for HER[J]. Acta Metall Sin, 2018, 54(8): 1179-1186.

全文: PDF(5085 KB)   HTML
摘要: 

在316L不锈钢网基底上利用水热法分别生长出MoS2纳米片和NiCo2O4纳米针,用同样的方法在生长有MoS2纳米片的不锈钢网上二次负载NiCo2O4纳米针制得了NiCo2O4/MoS2复合结构。利用SEM、TEM及XRD等手段对复合结构的表面形貌和物相组成进行表征,通过电化学工作站测试材料的析氢性能。结果表明,NiCo2O4/MoS2复合结构表现最佳,在析氢反应过程中起始过电位仅为65 mV,Tafel斜率为108 mV/dec,当电流密度达到100 mA/cm2时,过电位仅219.6 mV,且循环稳定性良好。

关键词 316L不锈钢网水热法硫化钼钴酸镍析氢反应    
Abstract

The synthesis of nanostructures catalytic electrode for hydrogen evolution reaction (HER) plays an important role in national economy such as chlor-alkali industry, chemical power supply and fuel cell. Electro-splitting of water powered by electric energy has attracted extensive attention because this process can convert electric energy into chemical energy for easier storage and delivery. In this work, a facile and direct synthesis of NiCo2O4 nanoneedles and MoS2 nanoflakes grown on 316L stainless steel meshes substrate by two step hydrothermal method was reported. Initially MoS2 nanoflakes grown on the stainless steel (SS) meshes, and then NiCo2O4 nanoneedles were grown on MoS2/SS meshes at optimum conditions using hydrothermal method. The prepared nanostructures were characterized by SEM, TEM and XRD. Then a three-electrode system was used to test the property of HER. The results show that the as-prepared electrode exhibits good catalytic behavior towards HER. The onset overpotential and Tafel slope are 65 mV and 108 mV/dec respectively. When the current density reaches 100 mA/cm2, the overpotential is 219.6 mV. Furthermore, the composite structure exhibits good cycle stability in the same experimental conditions.

Key words316L stainless steel mesh    hydrothermal    molybdenum sulfide    cobalt nickel oxide    hydrogen evolution reaction (HER)
收稿日期: 2018-01-04     
ZTFLH:  O646.5  
基金资助:国家自然科学基金项目Nos.51471122和51604202
作者简介:

作者简介 李 丹,男,1993年生,硕士生

图1  生长在不锈钢网上的MoS2纳米片和NiCo2O4纳米针的SEM像
图2  不锈钢网上NiCo2O4/MoS2复合结构及MoS2负载NiCo2O4纳米针前后的SEM像
图3  生长在不锈钢网上的MoS2纳米片、NiCo2O4纳米针以及NiCo2O4/MoS2复合结构的XRD谱
图4  NiCo2O4/MoS2复合结构TEM像以及电子衍射图
图5  3种样品在1 mol/L NaOH溶液中的LSV曲线和相对应的Tafel斜率图、在开路电位下的Nyquist图及不锈钢网上NiCo2O4/MoS2复合电极在相同电解液中连扫1000 cyc前后的析氢极化曲线
[1] Lewis N S, Nocera D G.Powering the planet: Phemical challenges in solar energy utilization[J]. Proc. Natl. Acad. Sci. USA, 2006, 103: 15729
[2] Xiang Z C, Zhang Z, Xu X J, et al.MoS2 nanosheets array on carbon cloth as a 3D electrode for highly efficient electrochemical hydrogen evolution[J]. Carbon, 2016, 98: 84
[3] Chu S, Majumdar A.Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488: 294
[4] Deng Z H, Li L, Ding W, et al.Synthesized ultrathin MoS2 nanosheets perpendicular to graphene for catalysis of hydrogen evolution reaction[J]. Chem. Commun., 2015, 51: 1893
[5] Arzac G M, Montes O, Fernández A.Pt-impregnated catalysts on powdery sic and other commercial supports for the combustion of hydrogen under oxidant conditions[J]. Appl. Catal., 2016, 201B: 391
[6] Aravind S S J, Ramanujachary K, Mugweru A, et al. Molybdenum phosphide-graphite nanomaterials for efficient electrocatalytic hydrogen production[J]. Appl. Catal., 2015, 490A: 101
[7] Deng J, Ren P J, Deng D H, et al.Highly active and durable non-precious-metal catalysts encapsulated in carbon nanotubes for hydrogen evolution reaction[J]. Energy Environ. Sci., 2014, 7: 1919
[8] Xiao C H, Li Y B, Lu X Y, et al.Bifunctional porous NiFe/NiCo2O4/Ni foam electrodes with triple hierarchy and double synergies for efficient whole cell water splitting[J]. Adv. Funct. Mater., 2016, 26: 3515
[9] Wu C, Li J H.Unique hierarchical Mo2C/C nanosheet hybrids as active electrocatalyst for hydrogen evolution reaction[J]. ACS Appl. Mater. Interfaces, 2017, 9: 41314
[10] Gao G P, O'Mullane A P, Du A J. 2D MXenes: A new family of promising catalysts for the hydrogen evolution reaction[J]. ACS Catal., 2017, 7: 494
[11] Li W, Xiong D H, Gao X F, et al.Self-supported Co-Ni-P ternary nanowire electrodes for highly efficient and stable electrocatalytic hydrogen evolution in acidic solution[J]. Catal. Today, 2016, 287: 122
[12] Zhang C, Huang Y, Yu Y F, et al.Sub-1.1 nm ultrathin porous CoP nanosheets with dominant reactive {200} facets: A high mass activity and efficient electrocatalyst for the hydrogen evolution reaction[J]. Chem. Sci., 2017, 8: 2769
[13] Tsai C, Li H, Park S, et al.Electrochemical generation of sulfur vacancies in the basal plane of MoS2 for hydrogen evolution[J]. Nat. Commun., 2017, 8: 15113
[14] Ma Q Y, Hu C Y, Liu K L, et al.Identifying the electrocatalytic sites of nickel disulfide in alkaline hydrogen evolution reaction[J]. Nano Energy, 2017, 41: 148
[15] Yang Y Q, Zhang K, Lin H L, et al.MoS2-Ni3S2 heteronanorods as efficient and stable bifunctional electrocatalysts for overall water splitting[J]. ACS Catal., 2017, 7: 2357
[16] Ho T A, Bae C, Lee S, et al.Edge-on MoS2 thin films by atomic layer deposition for understanding the interplay between the active area and hydrogen evolution reaction[J]. Chem. Mater., 2017, 29: 7604
[17] Xiong K, Li L, Zhang L, et al.Ni-doped Mo2C nanowires supported on Ni foam as a binder-free electrode for enhancing the hydrogen evolution performance[J]. J. Mater. Chem., 2015, 3A: 1863
[18] Jaramillo T F, J?rgensen K P, Bonde J, et al.Identification of Active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts[J]. Science, 2007, 317: 100
[19] Zhang X, Zhang Y, Yu B B, et al.Physical vapor deposition of amorphous MoS2 nanosheet arrays on carbon cloth towards highly reproducible large-area electrocatalysts for the hydrogen evolution reaction[J]. J. Mater. Chem., 2015, 3A: 19277
[20] Yu X X, Sun Z J, Yan Z P, et al.Direct growth of porous crystalline NiCo2O4 nanowire arrays on a conductive electrode for high-performance electrocatalytic water oxidation[J]. J. Mater. Chem., 2014, 2A: 20823
[21] Gao X H, Zhang H X, Li Q G, et al.Hierarchical NiCo2O4 hollow microcuboids as bifunctional electrocatalysts for overall water-splitting[J]. Angew. Chem., 2016, 55: 6290
[22] Wen S Y, Liu Y, Zhu F F, et al.Hierarchical MoS2 nanowires/NiCo2O4 nanosheets supported on Ni foam for high-performance asymmetric supercapacitors[J]. Appl. Surf. Sci., 2018, 428: 616
[23] Hu C C, Chen J C, Chang K H.Cathodic deposition of Ni(OH)2 and Co(OH)2 for asymmetric supercapacitors: Importance of the electrochemical reversibility of redox couples[J]. J. Power Sour., 2013, 221: 128
[24] Mcarthur M A, Jorge L, Coulombe S, et al.Synthesis and characterization of 3D Ni nanoparticle/carbon nanotube cathodes for hydrogen evolution in alkaline electrolyte[J]. J. Power Sour., 2014, 266: 365
[25] Chen J S, Ren J W, Shalom M, et al.Stainless steel mesh-supported NiS nanosheet array as highly efficient catalyst for oxygen evolution reaction[J]. ACS Appl. Mater. Interfaces, 2016, 8: 5509
[26] An C H, Wang Y J, Huang Y N, et al.Porous NiCo2O4 nanostructures for high performance supercapacitors via a microemulsion technique[J]. Nano Energy, 2014, 10: 125
[27] Liao L, Zhu J, Bian XL, et al.MoS2, formed on mesoporous graphene as a highly active catalyst for hydrogen evolution[J]. Adv. Funct. Mater., 2013, 23: 5326
[28] Bose R, Jin Z Y, Shin S, et al.Co-catalytic effects of CoS2 on the activity of the MoS2 catalyst for electrochemical hydrogen evolution[J]. Langmuir, 2017, 33: 5628
[29] Lv J L, Meng Y, Liang T X, et al.The effect of reduced graphene oxide on MoS2 for the hydrogen evolution reaction in acidic solution[J]. Chem. Phys. Lett., 2017, 678: 212
[30] Chen A S, Cui R J, He Y N, et al.Self-assembly of hollow MoS2 Microflakes by one-pot hydrothermal synthesis for efficient electrocatalytic hydrogen evolution[J]. Appl. Surf. Sci., 2017, 411: 210
[31] Bockris J O, Conway B E.The velocity of hydrogen evolution at silver cathodes as a function of hydrogen ion concentration[J]. Trans. Faraday Soc., 1952, 48: 724
[32] Yang F, Yao J Y, Liu F L, et al.Ni-Co oxides nanowire arrays grown on ordered TiO2 nanotubes with high performance in supercapacitor[J]. J. Mater. Chem., 2013, 1A: 594
[33] Wang J, Zhang L P, Liu X S, et al.Assembly of flexible CoMoO4@NiMoO4 xH2O and Fe2O3 electrodes for solid-state asymmetric supercapacitors[J]. Sci. Rep., 2017, 7: 41088
[1] 尚秀玲,张波,柯伟. 富Sb相对锌合金在近中性和酸性溶液中耐蚀性的影响[J]. 金属学报, 2017, 53(3): 351-357.