Please wait a minute...
金属学报  2009, Vol. 45 Issue (9): 1063-1069    
  论文 本期目录 | 过刊浏览 |
热处理工艺对含Nb焊缝金属组织与力学性能的影响
魏世同; 陆善平; 何广忠; 赵旭; 李殿中; 李依依
1) 中国科学院金属研究所沈阳材料科学国家(联合)实验室; 沈阳 110016
2) 长春轨道客车股份有限公司; 长春 130062
EFFECTS OF HEAT TREATMENT ON THE MICROSTRUCTURE AND MECHANICAL PROPERTY OF WELD METAL WITH Nb ADDITION
WEI Shitong; LU Shanping; HE Guangzhong; ZHAO Xu ; LI Dianzhong; LI Yiyi
1) Shenyang National Laboratory for Materials Science; Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110016
2) Changchun Railway Vehicles Co.; Ltd.; Changchun 130062
引用本文:

魏世同 陆善平 何广忠 赵旭 李殿中 李依依. 热处理工艺对含Nb焊缝金属组织与力学性能的影响[J]. 金属学报, 2009, 45(9): 1063-1069.
, , , . EFFECTS OF HEAT TREATMENT ON THE MICROSTRUCTURE AND MECHANICAL PROPERTY OF WELD METAL WITH Nb ADDITION[J]. Acta Metall Sin, 2009, 45(9): 1063-1069.

全文: PDF(1239 KB)  
摘要: 

采用含Nb及不含Nb两种焊丝对高速列车转向架用S355J2G3钢板进行焊接, 分析了焊态下接头各区域的性能差别, 研究了合金元素Nb和焊后热处理制度对焊缝金属组织和性能的影响. 结果表明: 焊缝金属的韧性是焊接接头性能的薄弱环节. 焊态下Nb的加入提高了焊缝金属的强度, 但对塑性和韧性无明显影响. 经去应力退火后, 不含Nb焊缝金属的强度降低, 延伸率和冲击功升高, 而含Nb焊缝金属的强度升高, 延伸率和冲击功降低, 退火后含Nb焊缝金属中 NbC颗粒析出是影响焊缝金属组织和性能的主要因素. 在焊后正火处理条件下, 随着正火温度的升高, 不含Nb焊缝金属的组织和性能均无明显变化, 而含Nb焊缝金属的强度明显升高, 延伸率和冲击功显著降低. 严格控制正火温度是含Nb焊缝金属获得高强韧性的关键. 含Nb焊缝中魏氏组织的含量随正火温度的升高而明显增多. 电镜观察表明, 经920 ℃正火处理后, 焊缝中的NbC颗粒尺寸大于退火态焊缝金属中的NbC相, 而在1200 ℃正火处理后NbC颗粒溶解消失.

关键词 Nb微合金钢热处理工艺焊缝金属Nb添加微观组织力学性能    
Abstract

There is a strong demand within the steel industry to develop high strength microalloyed steels and matching welding materials for satisfying the ever increasing industrial needs. Nb microalloyed steel is one of the important structure materials. The weldability determines the industrial application prospect of Nb microalloyed steel. The majority of previous studies concerning Nb bearing steels have been focus on the transformation behavior of Nb bearing steels in thermomechanical process and the effect of Nb element on the process. However, the research on the matching welding materials for Nb bearing steels and the effects of heat treatment process on the microstructure and mechanical properties of Nb bearing weld metal were seldom reported. In this paper, Nb bearing S355J2G3 steel plates for high-speed train bogie were welded using welding wires with and without Nb addition. Differences of properties at the different regions in the as-welded joint, and the effects of the Nb element and the different post weld heat treatments on the microstructure and the mechanical property of the weld metal were analyzed systematically. Experimental results showed that the weld metal toughness is the weakest link of the welding joint properties. Nb addition can improve the strength of the weld metal, but has no obvious effects on the plasticity and impact toughness. After stress relief annealing, the strength of the Nb free weld metal decreased, while the elongation and impact toughness increased. However, for the Nb bearing weld metal, stress relief annealing can improve the strength of the weld metal significantly, but deteriorate the elongation and impact toughness. NbC particles were found in the as-annealing weld metal. With the increase of the normalizing temperature, the microstructure and mechanical property of the Nb free weld metal have no obvious change, while, for the Nb bearing weld metal, the strength increases obviously and the elongation and impact toughness decrease. Therefore, setting the normalizing temperature properly is the key to get higher toughness for the Nb bearing weld metal. It was simultaneously found that the content of widmanstatten ferrite in the Nb bearing weld metal increases obviously with the increase of the normalizing temperature. Furthermore, when the normalizing temperature was set at 920 ℃, the size of the NbC particles in weld metal is larger than that in the as-annealed weld metal. However, when the normalizing temperature was raised to 1200 ℃, the NbC particles will disappear because of its dissolution at\linebreak higher temperature.

Key wordsNb microalloyed steel    heat treatment process    weld metal    addition of Nb    microstructure    mechanical property
收稿日期: 2009-03-16     
ZTFLH: 

TG457.11

 
基金资助:

国家科技支撑计划项目2009BAG12A07-D06和国家自然科学基金项目 50874101资助

作者简介: 魏世同, 男, 1981年生, 博士生

[1] Beladi H, Hodgson P D. Scr Mater, 2007; 56: 1059
[2] Zhang Y Q, Zhang H Q, Liu W M, Hou H. Mater Sci Eng, 2009; A499: 182
[3] Thridandapani R R, Misra R D K, Mannering T, Panda D, Jansto S. Mater Sci Eng, 2006; A422: 285
[4] Pereloma E V, Timokhina I B, Russell K F, Miller M K. Scr Mater, 2006; 54: 471
[5] Zhang Z H, Liu Y N, Liang X K, She Y. Mater Sci Eng, 2008; A474: 254
[6] Park J S, Lee Y K. Scr Mater, 2007; 57: 109
[7] Shanmugam S, Misra R D K, Hartmann J, Jansto S G. Mater Sci Eng, 2006; A441: 215
[8] Yu Q B, Wang Z D, Liu X H, Wang G D. Mater Sci Eng, 2004; A379: 384
[9] Lee S J, Lee Y K. Scr Mater, 2005; 52: 973
[10] Chen G A, Yang W Y, Guo S Z, Sun Z Q. Acta Metall Sin, 2004; 40: 1079
(陈国安, 杨王玥 , 郭守真, 孙祖庆. 金属学报, 2004; 40: 1079)

[11] Shanmugam S, Ramisetti N K, Misra R D K, Mannering T, Panda D, Jansto S. Mater Sci Eng, 2007; A460–461: 335
[12] Anumolu R, Ravi Kumar B, Misra R D K, Mannering T, Panda D, Jansto S G. Mater Sci Eng, 2008; A491: 55
[13] Nayak S S, Misra R D K, Hartmann J, Siciliano F, Gray J M. Mater Sci Eng, 2008; A494: 456
[14] Pereloma E V, Timokhina I B, Hodgson P D. Mater Sci Eng, 1999; A273–275: 448
[15] Yi H L, Du L X, Wang G D, Liu X H. J Mater Metall, 2005; 4: 295
(衣海龙, 杜林秀, 王国栋, 刘相华. 材料与冶金学报, 2005; 4: 295)

[16] Lee K J, Lee J K, Kang K B, Kwon O. ISIJ Int, 1992; 32: 326

[1] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[4] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[9] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[10] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[11] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[12] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[13] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[14] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[15] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.