Please wait a minute...
金属学报  2009, Vol. 45 Issue (7): 808-814    
  论文 本期目录 | 过刊浏览 |
孪晶片层厚度对纳米孪晶Cu疲劳性能的影响
唐恋; 卢磊
(中国科学院金属研究所沈阳材料科学国家(联合)实验室; 沈阳 110016)
EFFECT OF TWIN LAMELLAR THICKNESS ON THE FATIGUE PROPERTIES OF NANO--TWINNED Cu
TANG Lian; LU Lei
Shenyang National Laboratory for Materials Science; Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110016
引用本文:

唐恋 卢磊. 孪晶片层厚度对纳米孪晶Cu疲劳性能的影响[J]. 金属学报, 2009, 45(7): 808-814.
, , . EFFECT OF TWIN LAMELLAR THICKNESS ON THE FATIGUE PROPERTIES OF NANO--TWINNED Cu[J]. Acta Metall Sin, 2009, 45(7): 808-814.

全文: PDF(1151 KB)  
摘要: 

通过恒应力幅控制拉--拉疲劳实验, 比较了脉冲电解沉积制备的不同孪晶片层厚度纯Cu样品的疲劳寿命和疲劳耐久极限. 结果表明: 在应力疲劳下, 样品的疲劳寿命与疲劳耐久极限均随孪晶片层厚度的减小而提高. 疲劳样品的宏观表面变形形貌(SEM观察)和微观结构(TEM观察)表明:
当平均孪晶片层厚度为85 nm时, 材料的塑性形变由位错滑移和剪切带共同承担, 进而疲劳裂纹沿剪切带萌生; 而当平均孪晶片层厚度为32 nm时, 材料的塑性形变由位错--孪晶界交互作用主导, 从而导致疲劳裂纹沿孪晶界形成.

关键词 Cu孪晶界疲劳裂纹疲劳耐久极限滑移带剪切带    
Abstract

The fatigue property of
metals is one of the most important concerns in industrial design.
It is affected by various factors, such as the microstructure,
mechanics and the environment. For the polycrystalline metallic
materials, grain boundaries (GBs) usually play an important role and
affect the fatigue behaviors significantly. GBs could strengthen
materials by blocking the motion of dislocations; meanwhile, the
stress concentration which is caused by the dislocations pile--up in
the vicinity of GBs would result in the initial fatigue crack
easily. As a special interface of low--energy, twin boundaries (TBs)
can strengthen materials by blocking the motion of dislocations in a
manner similar to that of GBs. Our studies have indicated that a
high density of nano--scale twin lamellae can provide the high
strength without significantly compromising ductility, which is
fundamentally different from that of GB strengthening. So far, most
studies of the TB--related fatigue and cracking behaviors are
concentrated on the twins with a thickness of few or tens
micrometers. The study of the TB--related fatigue behavior in
nanometer scale is rare. In this work, high--purity Cu specimens
with high density of nano--scale coherent TBs were synthesized by
means of the pulsed electro--deposition (PED). The twin lamellar
thickness dependence of fatigue life and fatigue endurance limit of
the nano--twinned Cu (nt--Cu) were studied by conducting
tension--tension fatigue tests under constant stress amplitude
control at room temperature. It is found that both the fatigue life
and fatigue endurance limit increase with the decrease of the twin
lamellar thickness. Postmortem SEM observations suggest a transition
in crack initiation site from shear bands (SBs) to TBs, when the
twin lamellar thickness is reduced from 85 to 32 nm. For the nt--Cu
samples with thick twin lamellae, the lattices accommodate the
plastic strain, which results in the SB cracking. For the nt--Cu
samples with thin twin lamellae, the abundant TBs accommodate the
plastic strain. The stress concentration along TBs which is caused
by the interactions of dislocation--TBs facilitates the fatigue cracking along TBs.

Key wordsCu    twin boundary    fatigue crack    fatigue endurance limit    slip band    shear band
收稿日期: 2009-03-31     
ZTFLH: 

TG111.8

 
基金资助:

国家自然科学基金项目50571096, 50621091, 50725103和50890171及国家重点基础研究发展计划项目2005CB623604资助

作者简介: 唐恋, 男, 1983年生, 硕士生

[1] Thompson A W, Backofen W A. Acta Metall, 1971; 19: 597
[2] Lukas P, Kunz L. Mater Sci Eng, 1987; 85: 67
[3] Agnew S R, Vinogradov A Y, Hashimoto S, Weertman J R. J Electron Mater, 1999; 28: 1038
[4] Hoppel H W, Brunnbauer M, Mughrabi H, Valiev R Z, Zhilyaev A P. Proc Int Conf on Proc of Materialsweek 2000, Frankfurt, 2000, available from: http://www.materialsweek.org/proceedings
[5] Vinogradov A, Hashimoto S. Mater Trans, 2001; 42: 74
[6] Kunz L, Lukas P, Svoboda M. Mater Sci Eng, 2006; A424: 97
[7] Xu C, Wang Q, Zheng M, Li J, Huang M, Jia Q, Zhu J, Kunz L, Buksa M. Mater Sci Eng, 2008; A475: 249
[8] Wu S D,Wang Z G, Jiang C B, Li G Y, Alexandrov I V, Valiev R Z. Mater Sci Eng, 2004; A387–389: 560
[9] Meyers M A, Chawla K K. Mechanical Behavior of Materials. Upper Saddle River, NJ 07458: Prentice Hall, Inc., 1999: 257
[10] Murr L E, Moin E, Greulich F, Staudhammer K P. Scr Metall, 1978; 12: 1031
[11] Shen Y F, Lu L, Lu Q H, Jin Z H, Lu K. Scr Mater, 2005; 52: 989
[12] Thompson N,Wadsworth N J, Louat N. Philos Mag, 1956; 1: 113
[13] Thompson N. In: Aversbach B L ed., Proc Int Conf on Atomic Mechanisms of Fracture, London: Chapman and Hall, 1959: 354
[14] Boettner R C, McEvily A J, Liu Y C. Philos Mag, 1964; 10: 95
[15] Wang Z R, Margolin H. Metall Trans, 1985; 16A: 873
[16] Hook R E, Hirth J P. Acta Metall, 1967; 15: 535
[17] Neumann P, Tonnessen A. In: Kettunen P O ed., Proc Int Conf on Strength of Metals and Alloys, Oxford: Pergamon Press, 1988: 743
[18] Qu S, Zhang P, Wu S D, Zang Q S, Zhang Z F. Scr Mater, 2008; 59: 1131
[19] Suresh S. Fatigue of Materials. Cambrige: Cambridge University Press, 1991: 134
[20] Chen X H, Lu L. Scr Mater, 2007; 57: 133
[21] Asaro R J, Kulkarni Y. Scr Mater, 2008; 58: 389
[22] Jin ZH,Gumbsch P,Ma E, Albe K, LuK, Hahn H, Gleiter H. Scr Mater, 2006; 54: 1163
[23] Hanlon T, Tabachnikova E D, Suresh S. Int J Fatigue, 2005; 27: 1147
[24] Jin Z H, Gumbsch P, Albe K, Ma E, Lu K, Gleiter H, Hahn H. Acta Mater, 2008; 56: 1126
[25] Lee C S, Duggan B J. Acta Metall Mater, 1994; 42: 857
[26] Mughrabi H, Hoppel HW. Proc Symposium Structure and Mechanical Properties of Nanophase Materials–Theory and Computer Simulation vs Experiment, Material Research Society Symposium Proceeding, vol. 634, Boston, 2000: B2.1.1
[27] Wu S D, Wang Z G, Jiang C B, Li G Y, Alexandrov I V, Valiev R Z. Scr Mater, 2003; 48: 1605
[28] Goto M, Han S Z, Yakushiji T, Lim C Y, Kim S S. Scr Mater, 2006; 54: 2101
[29] Zhang P, Duan Q Q, Li S X, Zhang Z F. Philos Mag, 2008; 88: 2487

[1] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[2] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[3] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[4] 王寒玉, 李彩, 赵璨, 曾涛, 王祖敏, 黄远. 基于纳米活性结构的不互溶W-Cu体系直接合金化及其热力学机制[J]. 金属学报, 2023, 59(5): 679-692.
[5] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[6] 万涛, 程钊, 卢磊. 组元占比对层状纳米孪晶Cu力学行为的影响[J]. 金属学报, 2023, 59(4): 567-576.
[7] 许林杰, 刘徽, 任玲, 杨柯. CuNi-Ti合金抗支架内再狭窄与耐蚀性能的影响[J]. 金属学报, 2023, 59(4): 577-584.
[8] 巩向鹏, 伍翠兰, 罗世芳, 沈若涵, 鄢俊. 自然时效对Al-2.95Cu-1.55Li-0.57Mg-0.18Zr合金160℃人工时效的影响[J]. 金属学报, 2023, 59(11): 1428-1438.
[9] 戚钊, 王斌, 张鹏, 刘睿, 张振军, 张哲峰. 应力比对含缺陷选区激光熔化TC4合金稳态疲劳裂纹扩展速率的影响[J]. 金属学报, 2023, 59(10): 1411-1418.
[10] 韩冬, 张炎杰, 李小武. 短程有序对高层错能Cu-Mn合金拉-拉疲劳变形行为及损伤机制的影响[J]. 金属学报, 2022, 58(9): 1208-1220.
[11] 冯迪, 朱田, 臧千昊, 李胤樹, 范曦, 张豪. 喷射成形过共晶AlSiCuMg合金的固溶行为[J]. 金属学报, 2022, 58(9): 1129-1140.
[12] 周红伟, 高建兵, 沈加明, 赵伟, 白凤梅, 何宜柱. 高温低周疲劳下C-HRA-5奥氏体耐热钢中孪晶界演变[J]. 金属学报, 2022, 58(8): 1013-1023.
[13] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
[14] 刘续希, 柳文波, 李博岩, 贺新福, 杨朝曦, 恽迪. 辐照条件下Fe-Cu合金中富Cu析出相的临界形核尺寸和最小能量路径的弦方法计算[J]. 金属学报, 2022, 58(7): 943-955.
[15] 朱小绘, 刘向兵, 王润中, 李远飞, 刘文庆. 290℃氩离子辐照对Fe-Cu合金微观组织的影响[J]. 金属学报, 2022, 58(7): 905-910.