Please wait a minute...
金属学报  2009, Vol. 45 Issue (7): 801-807    
  论文 本期目录 | 过刊浏览 |
含富Cr沉淀颗粒Fe--Cr合金单晶体的疲劳变形特征
李小武1;2;曹昕明1;马超群1
1) 东北大学理学院材料物理与化学研究所; 沈阳 110004
2) 东北大学材料各向异性与织构教育部重点实验室; 沈阳110004
FATIGUE DEFORMATION FEATURES OF Fe--Cr ALLOY SINGLE CRYSTALS CONTAINING Cr--RICH PRECIPITATES
LI Xiaowu1;2; CAO Xinming1; MA Chaoqun1
1) Institute of Materials Physics and Chemistry; College of Sciences; Northeastern University; Shenyang 110004
2) Key Laboratory for Anisotropy and Texture of Materials; Ministry of Education; Northeastern University; Shenyang 110004
引用本文:

李小武 曹昕明 马超群. 含富Cr沉淀颗粒Fe--Cr合金单晶体的疲劳变形特征[J]. 金属学报, 2009, 45(7): 801-807.
, , . FATIGUE DEFORMATION FEATURES OF Fe--Cr ALLOY SINGLE CRYSTALS CONTAINING Cr--RICH PRECIPITATES[J]. Acta Metall Sin, 2009, 45(7): 801-807.

全文: PDF(1569 KB)  
摘要: 

在恒塑性应变幅εpl控制条件下研究了含富Cr沉淀颗粒的单滑移取向 Fe-35%Cr合金(质量分数)单晶体的疲劳变形特征. 实验结果和分析表明,当εpl≧2.5×10-3时,由于运动的位错易于切过细小富Cr沉淀颗粒,导致在循环刚开始第1周的拉伸阶段出现了明显的应力软化现象,并接着在疲劳早期阶段表现出轻微循环软化现象. 而且,晶体在循环过程中表现出一定程度的拉--压应力不对称性,这种增强的应力不对称性与细小富Cr沉淀颗粒的变形不稳定性有关.由大量细小滑移线聚集而成的粗滑移带以及高应变幅下形成的扭折带是该晶体主要的滑移变形特征.主裂纹大致沿主滑移面 发展并最终沿此开裂, 同时伴随有一些形态各异的二次裂纹在表面萌生.微观结构观察发现, 在低应变幅(εpl=5.0×10-4εpl)下就有类驻留滑移带(PSB)楼梯结构形成, 其体积分数随εpl的增大而增加.当εpl增大到5.0×10-3时,位错胞结构成为其主要微观结构特征.

关键词 Fe--Cr合金单晶体疲劳沉淀颗粒滑移变形位错结构    
Abstract

Although some knowledges about the fatigue deformation mechanisms of fcc alloy
single crystals containing precipitates have been obtained in the past several
decades, few relevant research findings have been reported on precipitates
containing bcc alloy single crystals. In the present work, a single--slip--oriented
bcc Fe-35%Cr alloy (mass fraction) single crystal containing Cr--rich precipitates
was prepared as the target material, and its fatigue deformation features were
investigated under constant plastic strain amplitude control. Experimental results
and analyses demonstrate that, when the plastic strain amplitude
εpl≧2.5×10-3, the Cr--rich precipitates can be
readily sheared by the moving dislocations during deformation, leading to an
obvious stress softening phenomenon observed at the tensile loading stage of the
first cycle, and subsequently to a slight cyclic softening phenomenon at a very
early stage of cycling. In addition, the tension--compression stress asymmetry was
found during cyclic deformation of the crystals, and this enhanced stress asymmetry
should be related to the deformation instability of Cr--rich precipitates. The slip
deformation features were mainly manifested by the formation of coarse slip bands
comprising a quantity of fine slip lines and also by the formation of the kink band
at high εpl(e.g., 5.0×10-3). The primary crack
develops roughly along the primary slip plane (101) and the crystal
finally cracks along this plane, accompanied with some secondary cracks having
various morphologies being formed on the crystal surface. Microstructural
observations indicate that persistent slip band (PSB) ladder--like structures
can be found at a low εpl of 5.0×10-4, and the
volume fraction of them increases with increasing εpl.
As εpl is raised to 5.0×10-3, the microstructural
features are primarily characterized by the formation of dislocation cells.

Key wordsFe--Cr alloy    single crystal    fatigue    precipitate    slip deformation    dislocation structure
收稿日期: 2009-03-06     
ZTFLH: 

TG111.8

 
基金资助:

国家自然科学基金项目50771029, 教育部新世纪优秀人才支持计划项目NCET--07--0162和教育部留学回国人员科研启动基金项目20071108--1资助

作者简介: 李小武, 男, 1969年生, 教授, 博士

[1] Basinski Z S, Basinski S J. Prog Mater Sci, 1992; 36: 89
[2] Suresh S. Fatigue of Materials. 2nd Ed., London: Cambridge University Press, 1998: 39
[3] Li X W, Wang Z G, Li S X. Philos Mag Lett, 1999; 79: 869
[4] Wang Z G, Zhang Z F, Li X W, Jia W P, Li S X. Mater Sci Eng, 2001; A319–321: 63
[5] Li X W, Umakoshi Y, Gong B, Li S X, Wang Z G. Mater Sci Eng, 2002: A333: 51
[6] Lee J K, Laird C. Mater Sci Eng, 1982; 54: 39
[7] Steiner D, Gerold V. Mater Sci Eng, 1986; 84: 77
[8] Kato M, Honjo N, Fujii T. ISIJ Int, 1997; 37: 1224
[9] Wilhelm M. Mater Sci Eng, 1981; 48: 91
[10] Mughrabi H, Herz K, Stark X. Acta Metall, 1976; 24: 659
[11] Kaneko Y, Nagai Y, Miyamoto H, Mimaki T, Hashimoto S. Mater Sci Eng, 2001; A319–321: 559
[12] Li X W, Umakoshi Y. Scr Mater, 2003; 48: 545
[13] Zhao W H, Nie W. China Stainless Market Inf, 2005; 17: 9
(赵伟宏, 聂闻. 不锈: 市场与信息, 2005; 17: 9)

[14] Xiao J M. Metallographic Problems in Stainless Steels, Beijing: Metallurgical Industry Press, 2006: 38
(肖纪美. 不锈钢的金属学问题. 北京: 冶金工业出版社, 2006: 38)

[15] Mima G, Yamaguchi M. Trans JIM, 1966; 7: 117
[16] Lai Z H. Crystal Defects and Mechanical Properties of Metals. Beijing: Metallurgical Industry Press, 1988: 228
(赖祖涵. 金属的晶体缺陷与力学性质. 北京: 冶金工业出版社, 1988: 228)

[17] Magnin T, Driver J H. Mater Sci Eng, 1979; 38: 175
[18] Li S X, Li Y, Li G Y, Yang J H, Wang Z G, Lu K. Philos Mag, 2002; 82A: 867
[19] Crocker A G, Abell J S. Philos Mag, 1976; 33: 305
[20] Li X W, Wang Z G, Li S X. Philos Mag, 2000; 80A: 1901
[21] Kaneko Y, Mimaki T, Hashimoto S. Acta Mater, 1999; 47: 165
[22] Man J, PetrenecM, Obrtl´ak K, Pol´ak J. Acta Mater, 2004; 52: 5551

[1] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[3] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[4] 李嘉荣, 董建民, 韩梅, 刘世忠. 吹砂对DD6单晶高温合金表面完整性和高周疲劳强度的影响[J]. 金属学报, 2023, 59(9): 1201-1208.
[5] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[6] 张滨, 田达, 宋竹满, 张广平. 深潜器耐压壳用钛合金保载疲劳服役可靠性研究进展[J]. 金属学报, 2023, 59(6): 713-726.
[7] 张哲峰, 李克强, 蔡拓, 李鹏, 张振军, 刘睿, 杨金波, 张鹏. 层错能对面心立方金属形变机制与力学性能的影响[J]. 金属学报, 2023, 59(4): 467-477.
[8] 戚钊, 王斌, 张鹏, 刘睿, 张振军, 张哲峰. 应力比对含缺陷选区激光熔化TC4合金稳态疲劳裂纹扩展速率的影响[J]. 金属学报, 2023, 59(10): 1411-1418.
[9] 韩冬, 张炎杰, 李小武. 短程有序对高层错能Cu-Mn合金拉-拉疲劳变形行为及损伤机制的影响[J]. 金属学报, 2022, 58(9): 1208-1220.
[10] 周红伟, 高建兵, 沈加明, 赵伟, 白凤梅, 何宜柱. 高温低周疲劳下C-HRA-5奥氏体耐热钢中孪晶界演变[J]. 金属学报, 2022, 58(8): 1013-1023.
[11] 宋文硕, 宋竹满, 罗雪梅, 张广平, 张滨. 粗糙表面高强铝合金导线疲劳寿命预测[J]. 金属学报, 2022, 58(8): 1035-1043.
[12] 田妮, 石旭, 刘威, 刘春城, 赵刚, 左良. 预拉伸变形对欠时效7N01铝合金板材疲劳断裂的影响[J]. 金属学报, 2022, 58(6): 760-770.
[13] 杨秦政, 杨晓光, 黄渭清, 石多奇. 粉末高温合金FGH4096的疲劳小裂纹扩展行为[J]. 金属学报, 2022, 58(5): 683-694.
[14] 李细锋, 李天乐, 安大勇, 吴会平, 陈劼实, 陈军. 钛合金及其扩散焊疲劳特性研究进展[J]. 金属学报, 2022, 58(4): 473-485.
[15] 苏凯新, 张继旺, 张艳斌, 闫涛, 李行, 纪东东. 微弧氧化6082-T6铝合金的高周疲劳性能及残余应力松弛机理[J]. 金属学报, 2022, 58(3): 334-344.