Please wait a minute...
金属学报  2009, Vol. 45 Issue (6): 729-736    
  论文 本期目录 | 过刊浏览 |
激光立体成形Ti60--Ti2AlNb梯度材料的组织与相演变
杨模聪; 林 鑫;许小静;陈 静; 黄卫东
(西北工业大学凝固技术国家重点实验室; 西安 710072)
MICROSTRUCTURE AND PHASE EVOLUTION IN Ti60--Ti2AlNb GRADIENT MATERIAL PREPARED BY LASER SOLID FORMING
YANG Mocong; LIN Xin; XU Xiaojing; CHEN Jing; HUANG Weidong
State Key Laboratory of Solidification Processing; Northwestern Polytechnical University; Xi'an 710072
引用本文:

杨模聪 林鑫 许小静 陈静 黄卫东. 激光立体成形Ti60--Ti2AlNb梯度材料的组织与相演变[J]. 金属学报, 2009, 45(6): 729-736.
, , , , . MICROSTRUCTURE AND PHASE EVOLUTION IN Ti60--Ti2AlNb GRADIENT MATERIAL PREPARED BY LASER SOLID FORMING[J]. Acta Metall Sin, 2009, 45(6): 729-736.

全文: PDF(4018 KB)  
摘要: 

采用激光立体成形技术制备了沿沉积方向成分渐变的立墙式Ti60--Ti2AlNb梯度材料, 研究了沉积态Ti60--Ti2AlNb梯度材料的相 与显微组织的演变规律. 随Al和Nb含量的增加, 梯度材料中呈现α+βα+α' →α' →α+βα+β/B2+α2 →β/B2+α2β/B2+α2+O →B2+O → B2的相演变趋势, α相在Ti60到Ti60--60%Ti2AlNb (质量分数) 的成分范围内一直存在. 梯度材料的硬度同样随着Al和Nb含量的增加而增加, 并随着B2+O相的形成达到极大值, 不过随着在Ti2AlNb端部全B2相的获得, 硬度急剧降低. 基于钛合金富Ti区非平衡相图, 结合Al和Nb元素对α, α2,β/B2和O相稳定性的影响分析, 及考虑激光立体成形所具有的反复回火/退火和热积累效应, 对梯度材料在激光立体成形过程中呈现的相演化规律进行了解释.

关键词 激光立体成形 Ti60 Ti2AlNb 功能梯度材料 相演变 显微硬度    
Abstract

Ti60 titanium alloy and Ti2AlNb alloy have been developed to serve at 600 and 650---850℃, respectively. Because only some regions of hot--end components encounter extreme high temperature environments, it is appropriate to use functionally gradient materials (FGMs) according to the distribution of the working temperature. In this paper, a thin--wall Ti60--Ti2AlNb alloy with composition gradient was fabricated by laser solid forming (LSF). The phase morphological evolution and microstructure evolution along the gradient direction were investigated. With the increase of Al and Nb contents, a series of phase evolutions along the compositional gradient occurred: α+βα+α' →α' →α+βα+β/B2+α2 →β/B2+α2β/B2+α2+O →B2+O → B2. α--phase can exist in a wide composition range from Ti60 to Ti60--60%Ti2AlNb (mass fraction). The hardness of the material increases with the increase of Al and Nb contents, and reaches the maximum when B2+O phases appear, and then decreases sharply as obtaining the whole B2 phase at the top position of Ti2AlNb part. Based on the non--equilibrium phase diagram of the Ti--rich corner, the phase morphological evolution during forming of the gradient materials was explained on combining with the analysis of the influence of the Al and  Nb on the stabilities of α, α2, β/B2 and O phases in titanium alloys and the effects of recurrent tempering/annealing and heat accumulation in laser solid forming.

Key wordslaser solid forming    Ti60    Ti2AlNb    functionally gradient material    phase transformation    microhardness
收稿日期: 2008-12-08     
ZTFLH: 

TG132.32

 
基金资助:

新世纪优秀人才支持计划项目06--0879, 国家高技术研究发展计划项目2006AA03Z0449和国家重点基础研究发展计划项目2007CB613805资助

作者简介: 杨模聪, 男, 1982年生, 硕士生

[1] Cao C X. Rare Met Lett, 2006; 25(1): 17
(曹春晓. 稀有金属快报, 2006; 25(1): 17)
[2] Tang Z L, Wang F H, Wu W T, Wang Q J, Li D. Mater Sci Eng, 1998; A255: 133
[3] Wanjara P, Jahazi M, Monajati H, Yue S. Mater Sci Eng, 2006; A416: 300
[4] Vermaa R, Ghosh A K, Merrickb H, Mukherji T. Mater Sci Eng, 1995; A191: 151
[5] Tetyukhin V, Levin I, Ilyenko V. Heatresistant Ttitanium Alloys with Enhanced, Heat Resistance, Thermal Stability. Cambridge, UK: Cambridge University Press, 1996:2430
[6] Li M Q, Lin Y Y. Int J Hydrogen Energy, 2007; 32: 626
[7] Cai J M, Li Z X, Ma J M, Huang X, Cao C X. Mater Rev,2005; 19(1): 50
(蔡建明, 李臻熙, 马济民, 黄旭, 曹春晓. 材料导报, 2005; 19(1): 50)
[8] Banerjee D, Gogia A K, Nandy T K, Joshi V A. Acta Metall, 1988; 36: 871
[9] Banerjee D. Prog Mater Sci, 1997; 42: 135
[10] Huang W D, Lin X, Chen J, Liu Z X, Li Y M. Laser Solid Forming. Xi’an: Northwestern Polytechnical University Press, 2007: 5
(黄卫东, 林鑫, 陈静, 刘振侠, 李延民. 激光立体成形. 西安: 西北工业大学出版社, 2007: 5)
[11] Lin X, Yue T M, Yang H O, Huang W D. Acta Mater, 2006; 54: 1901
[12] Lin X, Yue T M, Yang H O, Huang W D. Mater Sci Eng, 2005; A391: 325
[13] Liu J T, Lin X, L¨u X W, Chen J, Huang W D. Acta Metall Sin, 2008; 44: 1006
(刘建涛, 林鑫, 吕晓卫, 陈静, 黄卫东. 金属学报, 2008; 44: 1006)
[14] Xu X J, Lin X, Yang M C, Chen J, Huang W D. Acta Metal Sin, 2008; 44: 1013
(许小静, 林鑫, 杨模聪, 陈静, 黄卫东. 金属学报, 2008; 44: 1013)
[15] Collins P C, Banerjee R, Banerjee S, Fraser H L. Mater Sci Eng, 2003; A352: 118
[16] Deng A H. Shanghai Nonferrous Met, 1999; 20: 193
(邓安华. 上海有色金属, 1999; 20: 193)
[17] Wang J Y, Ge Z M, Zhou Y B. Aeronautical Titanium Alloy. Shanghai: Shanghai Science & Technology Press, 1985: 120
(王金友, 葛志明, 周彦邦. 航空用钛合金. 上海: 上海科学技术出版社, 1985: 120)
[18] Zhang J, Ma H F. J Shenyang Univ, 2006; 18(4): 1
(张钧, 马鸿峰. 沈阳大学学报, 2006; 18(4): 1)
[19] Boehlert C J, Majumdar B S, Seetharaman V, Miracle D B. Metall Mater Trans, 1999; 30A: 2305

[1] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[2] 梁琛, 王小娟, 王海鹏. 快速凝固Ti-Al-Nb合金B2相形成机制与显微力学性能[J]. 金属学报, 2022, 58(9): 1169-1178.
[3] 邓聪坤,江鸿翔,赵九洲,何杰,赵雷. Ag-Ni偏晶合金凝固过程研究[J]. 金属学报, 2020, 56(2): 212-220.
[4] 刘海霞, 陈金豪, 陈杰, 刘光磊. NaCl溶液腐蚀后304不锈钢的射流空蚀特征[J]. 金属学报, 2020, 56(10): 1377-1385.
[5] 卢正冠,吴杰,徐磊,崔潇潇,杨锐. Ti2AlNb异形粉末环件的轧制成形与性能研究[J]. 金属学报, 2019, 55(6): 729-740.
[6] 翟斌, 周凯, 吕鹏, 王海鹏. 自由落体条件下Ti-6Al-4V合金微液滴的快速凝固研究[J]. 金属学报, 2018, 54(5): 824-830.
[7] 胡国栋, 王培, 李殿中, 李依依. 新型25Cr-20Ni奥氏体耐热不锈钢750 ℃持久实验过程中析出相演变[J]. 金属学报, 2018, 54(11): 1705-1714.
[8] 张媛媛,林鑫,魏雷,任永明. 激光立体成形退火态Zr55Cu30Al10Ni5粉末的晶化行为[J]. 金属学报, 2017, 53(7): 824-832.
[9] 陈占兴,丁宏升,刘石球,陈瑞润,郭景杰,傅恒志. 直流电流对Ti-48Al-2Cr-2Nb合金组织和性能的影响[J]. 金属学报, 2017, 53(5): 583-591.
[10] 宋衎,喻凯,林鑫,陈静,杨海欧,黄卫东. 热处理态激光立体成形Inconel 718高温合金的组织及力学性能*[J]. 金属学报, 2015, 51(8): 935-942.
[11] 宋梦华, 林鑫, 刘丰刚, 杨海欧, 黄卫东. 激光立体成形零件竖直外侧壁向内倾斜的形成及模型*[J]. 金属学报, 2015, 51(6): 753-761.
[12] 赵子博, 王清江, 刘建荣, 陈志勇, 朱绍祥, 于冰冰. Ti60合金棒材中的织构及其对拉伸性能的影响*[J]. 金属学报, 2015, 51(5): 561-568.
[13] 丁杰, 张志明, 王俭秋, 韩恩厚, 唐伟宝, 张茂龙, 孙志远. 三代核电接管安全端异种金属焊接接头的显微表征[J]. 金属学报, 2015, 51(4): 425-439.
[14] 齐东丽, 雷浩, 范迪, 裴志亮, 宫骏, 孙超. Mo含量对CrMoN复合涂层的组织结构和性能的影响[J]. 金属学报, 2015, 51(3): 371-377.
[15] 濮晟, 谢光, 郑伟, 王栋, 卢玉章, 楼琅洪, 冯强. W和Re对固溶态镍基单晶高温合金变形和再结晶的影响*[J]. 金属学报, 2015, 51(2): 239-248.