Please wait a minute...
金属学报  2015, Vol. 51 Issue (8): 935-942    DOI: 10.11900/0412.1961.2014.00648
  本期目录 | 过刊浏览 |
热处理态激光立体成形Inconel 718高温合金的组织及力学性能*
宋衎,喻凯,林鑫(),陈静,杨海欧,黄卫东
MICROSTRUCTURE AND MECHANICAL PROPERTIES OF HEAT TREATMENT LASER SOLID FORMING SUPERALLOY INCONEL 718
Kan SONG,Kai YU,Xin LIN(),Jing CHEN,Haiou YANG,Weidong HUANG
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072
引用本文:

宋衎,喻凯,林鑫,陈静,杨海欧,黄卫东. 热处理态激光立体成形Inconel 718高温合金的组织及力学性能*[J]. 金属学报, 2015, 51(8): 935-942.
Kan SONG, Kai YU, Xin LIN, Jing CHEN, Haiou YANG, Weidong HUANG. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF HEAT TREATMENT LASER SOLID FORMING SUPERALLOY INCONEL 718[J]. Acta Metall Sin, 2015, 51(8): 935-942.

全文: PDF(6183 KB)   HTML
摘要: 

研究了经过高温均匀化固溶处理+中间d时效处理+双级时效处理的激光立体成形Inconel 718合金的组织及力学性能, 并考察了热处理后合金的位错组态. 结果表明, 由于热处理过程中的再结晶行为, 合金组织由沉积态的初始柱状晶转化为等轴晶. Laves相完全固溶, 针状d相以及g″ 强化相分别在晶界处以及 g基体上大量弥散析出. 激光立体成形Inconel 718 合金热处理态的抗拉强度、屈服强度、延伸率以及断面收缩率均达到锻件标准. 位错与g″ 相的相互作用为位错切割g″ 相以及位错绕过g″ 相, 在位错绕过g″ 相的区域, 位错密度比位错切割g″ 相区域高. 由于热处理态d相尺寸大于锻件, 位错会在d相中发生塞积. 碳化物和位错之间也存在强烈的相互作用, 通过钉扎和拖曳作用来阻碍位错运动.

关键词 激光立体成形Inconel 718显微组织力学性能位错组态    
Abstract

With the development of additive manufacturing technology of metal, laser solid forming (LSF) has become an important fabricating method for high performance and complex Inconel 718 alloy components. However, there still exist a certain microsegregation and a large uneven distribution of residual stress in as-deposited Inconel 718 alloy due to rapid heating and cooling in LSF. Heat treatment is a necessary method for further improving the microstructure and mechanical properties. In this work, the microstructure and mechanical properties of LSFed Inconel 718 alloy heat treated with high temperature solution, d phase aging and double aging treatment was investigated, the dislocation configuration of heat treated LSFed Inconel 718 alloy was characterized. It is found that the recrystallization occurs after the heat treatment, which leads to the transition from the columnar grain in the as-deposited to the equiaxed grain. Laves phase is dissolved completely after the heat treatment, and the needle d phase and the g phase precipitate along the grain boundary and in the g phase matrix, respectively. The strength, elongation and reduction of area of the heat treated Inconel 718 alloy satisfy the wrought standards. There are two kinds of interactions between the dislocation and the g phase, the shearing mechanism and the Orowan bypass mechanism, which play the dominant role corresponding to the lower and the higher distribution density of g phase, respectively. Additionally, the dislocations pile up at the d phase owing to the larger size of the d phase in the heat treated Inconel 718 alloy compared with that in the wrought. The dislocation glide can be also hindered by carbide due to the pinning and drag effect.

Key wordslaser solid forming (LSF)    Inconel 718    microstructure    mechanical property    dislocation configuration
    
基金资助:*国家自然科学基金项目51323008, 51105311和51271213, 国家重点基础研究发展计划项目2011CB610402, 国家高技术研究发展计划项目2013AA031103, 中国博士后科学基金项目2015M572597及高等学校博士学科点专项科研基金项目20116102110016资助
图1  激光立体成形Inconel 718合金沉积态的显微组织和EDS分析
图2  激光立体成形Inconel718合金经不同热处理后的显微组织
图3  激光立体成形Inconel718合金热处理前后的XRD谱
Material condition sb / MPa ss / MPa d / % y / %
LSF 931 785 19.82 26.88
LSF+ST 1182 986 18.86 25.56
LSF+ST+d AT 1290 1089 17.88 25.02
LSF+ST+d AT+DAT 1351 1184 17.20 23.70
Wrought standard (Q/3B548-1996) 1340 1100 12.00 15.00
表1  激光立体成形Inconel 718合金的室温拉伸性能
图4  激光立体成形Inconel 718合金热处理态的拉伸断口形貌
图5  热处理后激光立体成形Inconel 718合金中g″ 相的TEM明场像、暗场像和电子衍射谱
图6  热处理后激光立体成形Inconel 718合金中d相的TEM明场像和电子衍射谱
图7  热处理后激光立体成形Inconel 718合金中碳化物的TEM明场像和EDS分析
[1] Huang W D,Lin X,Chen J,Li Y M. Laser Solid Forming. Xi'an: Northwestern Polytechnical University Press, 2007: 10 (黄卫东,林 鑫,陈 静,李延民. 激光立体成形. 西安: 西北工业大学出版社, 2007: 10)
[2] Feng L P, Huang W D, Yang H O. Acta Metall Sin, 2002; 38: 501 (冯莉萍, 黄卫东, 杨海鸥. 金属学报, 2002; 38: 501)
[3] Gaumann M, Henry S, Wagniere J D. Mater Sci Eng, 1999; A271: 232
[4] Qi H, Azer M, Ritter A. Metall Mater Trans, 2009; 40A: 2410
[5] Xu X J, Lin X, Yang M C, Huang W D. Acta Metall Sin, 2008; 44: 1013 (许小静, 林 鑫, 杨模聪, 黄卫东. 金属学报, 2008; 44: 1013)
[6] Cao J, Liu F C, Lin X, Huang C P, Chen J, Huang W D. Opt Laser Technol, 2013; 45: 228
[7] Chen H, Gu D D, Dai D H. Opt Laser Technol, 2013; 54: 98
[8] Wang L, Xu X J, Lin X. Huang W D. Acta Metall Sin, 2010; 46: 1081 (王 亮, 许小静, 林 鑫, 黄卫东. 金属学报, 2010; 46: 1081)
[9] Liu F C, Lin X, Zhao X M, Chen J, Huang W D. Opt Laser Technol, 2011; 43: 208
[10] Lin X, Yue T M, Yang H O, Huang W D. Acta Mater, 2006; 54: 1901
[11] Wang Z, Li J G, Zhao N R, Jin T, Zhang J H. Acta Metall Sin, 2002; 38: 920 (王 震, 李金国, 赵乃仁, 金 涛, 张静华. 金属学报, 2002; 38: 920)
[12] Kolotukhin E V, Baum B A, Kuleshova E A, Larioiov V N, Tretyakova E E, Tyagunov G V. Steel, 1992; (7): 21
[13] Blackwell P L. J Mater Process Technol, 2005; 170: 240
[14] Lin X, Yang H O, Chen J, Huang W D. Acta Metall Sin, 2006; 42: 361 (林 鑫, 杨海鸥, 陈 静, 黄卫东. 金属学报, 2006; 42: 361)
[15] Zhao X M, Chen J, Lin X, Huang W D. Mater Sci Eng, 2008; A478: 119
[16] Liu F C, Lin X, Huang W D. Rare Met Mater Eng, 2010; 39: 1519 (刘奋成, 林 鑫, 黄卫东. 稀有金属材料与工程, 2010; 39: 1519)
[17] Zhao W W, Lin X, Chen J, Huang W D. Chin J Lasers, 2009; 36: 3220 (赵卫卫, 林 鑫, 陈 静, 黄卫东. 中国激光, 2009; 36: 3220)
[18] Liu F C. PhD Dissertation, Northwestern Polytechnical University, Xi' an, 2011 (刘奋成. 西北工业大学博士学位论文, 西安, 2011)
[19] Zhuang J Y,Du J H,Deng Q. Wrought Superalloy GH4169. Beijing: Metallurgical Industry Press, 2006: 60 (庄景云,杜金辉,邓 群. 变形高温合金GH4169. 北京: 冶金工业出版社, 2006: 60)
[20] Rong Y, Chen S, Hu G X. Mater Sci Eng, 1999; A30: 2297
[21] Lin Y C, Deng J, Jiang Y Q, Wen D X, Liu G. Mater Sci Eng, 2014; A598: 251
[22] Liu F C, Lin X, Yang G L, Huang C P, Chen J, Huang W D. Acta Metall Sin, 2010; 46: 1047 (刘奋成, 林 鑫, 杨高林, 黄春平, 陈 静, 黄卫东. 金属学报, 2010; 46: 1047)
[23] Cui Y X,Wang C L. Analysis of Metal Fracture Surface. Harbin: Harbin Institute of Technology Press, 1998: 48 (崔约贤,王长利. 金属断口分析. 哈尔滨: 哈尔滨工业大学出版社, 1998: 48)
[24] Song X G. Master Thesis, Harbin Institute of Technology, 2007 (宋晓国. 哈尔滨工业大学硕士学位论文, 2007)
[25] Sundararaman M, Mukhopadhyay P, Banerjee S. Metall Mater Trans, 1988; 19A: 453
[26] Guo K X, Lin B J. Acta Phys Sin, 1978; 27: 729
[27] Liu L R, Jin T, Zhao N R, Sun X F, Guan H R, Hu Z Q. Mater Sci Eng, 2003; A361: 191
[28] He L Z, Zheng Q, Sun X F, Guan H R, Hu Z Q, Tieu A K, Lu C, Zhu H T. Mater Sci Eng, 2005; A397: 297
[29] Guo J T. Materials Science and Engineering for Superalloys. Beijing: Science Press, 2008: 107 (郭建亭. 高温合金材料学. 北京: 科学出版社, 2008: 107)
[1] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[6] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[9] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[10] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[11] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[12] 徐磊, 田晓生, 吴杰, 卢正冠, 杨锐. 热等静压成形Inconel 718粉末合金的显微组织和力学性能[J]. 金属学报, 2023, 59(5): 693-702.
[13] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[14] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[15] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.