Please wait a minute...
金属学报  2015, Vol. 51 Issue (3): 371-377    DOI: 10.11900/0412.1961.2014.00549
  本期目录 | 过刊浏览 |
Mo含量对CrMoN复合涂层的组织结构和性能的影响
齐东丽, 雷浩, 范迪, 裴志亮, 宫骏(), 孙超
中国科学院金属研究所, 沈阳 110016
EFFECT OF Mo CONTENT ON THE MICROSTRUC-TURE AND PROPERTIES OF CrMoN COMPOSITE COATINGS
QI Dongli, LEI Hao, FAN Di, PEI Zhiliang, GONG Jun(), SUN Chao
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

齐东丽, 雷浩, 范迪, 裴志亮, 宫骏, 孙超. Mo含量对CrMoN复合涂层的组织结构和性能的影响[J]. 金属学报, 2015, 51(3): 371-377.
Dongli QI, Hao LEI, Di FAN, Zhiliang PEI, Jun GONG, Chao SUN. EFFECT OF Mo CONTENT ON THE MICROSTRUC-TURE AND PROPERTIES OF CrMoN COMPOSITE COATINGS[J]. Acta Metall Sin, 2015, 51(3): 371-377.

全文: PDF(4694 KB)   HTML
摘要: 

采用直流反应磁控溅射技术在M2高速钢基片上制备了不同Mo含量的CrMoN复合涂层, 研究了Mo含量的变化对CrMoN复合涂层成分、相结构、化学价态、截面形貌、显微硬度和摩擦性能等的影响.结果表明, 随着Mo含量的增加, CrMoN复合涂层的相结构先转变为以fcc-CrN相为基础的(Cr, Mo)N置换式固溶体, 后转变为以fcc-g-Mo2N相为主的混合相, 当Mo含量为69.3% (原子分数)时, 伴有少量的bcc-Mo相生成; CrMoN复合涂层的显微硬度先增加后降低, 在Mo含量为45.4%时具有最高值; 当Mo含量大于45.4%时, 在与对磨副摩擦过程中会生成大量的MoO3相, 降低了摩擦系数和磨损率.

关键词 CrMoN复合涂层磁控溅射显微硬度摩擦系数    
Abstract

Ceramic coatings are usually used as protective coatings to improve performance and durability of tools and components now. Compared with conventional TiN based hard coating, CrN based coating like Cr-X-N (X=Ti, Al, Si, C, B, Ta, Nb, Ni) is a more interesting choice because of low friction coefficient, superior oxidation resistance and excellent corrosion resistance under severe environment conditions. The CrMoN is among these coatings and attractive since self-lubricating phase MoO3 may be formed in tribological process. However the effect of Mo content on structure and tribological properties of CrMoN coatings is not still clear. In the present study, CrMoN composite coatings with different Mo content were deposited on M2 high speed steel (HSS) substrates by DC reactive magnetron sputtering. The effect of Mo content on the microstructure and properties was investigated systematically, including the chemical composition, phase structure, chemical valence, cross-section morphologies, microhardness and tribological properties. The results showed that the phase transformation of the as-deposited coatings occurred with the increase of Mo content. The phase structure changed to (Cr, Mo)N substitutional solid solution based on CrN-type firstly, and then to mixed phase with g-Mo2N as main phase, and a small amount of elemental bcc-Mo phase appeared when the Mo content is 69.3%. The microhardness of the CrMoN composite coatings always increased until the highest hardness when the Mo content reached to 45.4%, and then decreased; a relatively low friction coefficient was obtained compared with that of the CrN coating when more than 45.4%Mo content was doped. The reason is that the more MoO3 lubricant phase could be formed in tribological process.

Key wordsCrMoN composite coating    magnetron sputtering    microhardness    friction coefficient
    
ZTFLH:  TG172  
基金资助:*国家重点基础研究发展计划项目2012CB625100, 国家自然科学基金项目51171197, 以及辽宁省自然科学基金项目2013020132和2013010442-401资助
作者简介: null

齐东丽, 男, 1978年生, 博士生

图 1  磁控溅射装置示意图
Sample
No.
Process Gas flow rate / (mL·min-1) Cr target current / A Mo target current / A Substrate
bias / V
Time
min
Ar N2
Substrate cleaning 60 - 0.4 - -200 5
Cr adhesion layer 60 - 0.4 - -100 5
1 CrN 30 30 0.4 - -100 60
2 CrMoN 30 30 0.4 0.2 -100 120
3 CrMoN 30 30 0.4 0.3 -100 120
4 CrMoN 30 30 0.4 0.4 -100 120
5 CrMoN 30 30 0.3 0.4 -100 120
6 CrMoN 30 30 0.2 0.4 -100 120
表1  CrMoN复合涂层沉积参数
Sample
No.
Atomic fraction / % Thickness
μm
Deposition rate (nm·s-1) Grain size nm Hardness
HV
Cr Mo
1 100.0 0.0 1.58 0.44 19.0 1802
2 79.6 20.4 1.66 0.23 16.3 1910
3 68.7 31.3 1.70 0.24 15.2 1993
4 61.6 45.4 1.80 0.25 12.5 2714
5 45.8 54.2 1.57 0.22 14.5 2235
6 30.7 69.3 1.52 0.20 18.0 2206
表2  不同Mo含量CrMoN复合涂层的金属元素原子分数、厚度、沉积速率、晶粒尺寸和显微硬度
图2  不同Mo含量CrMoN复合涂层的XRD谱
图3  fcc结构晶格常数随Mo含量的变化
图4  不同Mo含量CrMoN复合涂层的截面SEM像
图5  CrMoN复合涂层No.2和No.6的XPS谱
图6  不同Mo含量CrMoN复合涂层的摩擦系数和磨损率
图7  不同Mo含量CrMoN复合涂层的磨痕表面轮廓
图8  不同Mo含量CrMoN复合涂层的磨痕表面SEM像
[1] Navinšek B, Panjan P, Milošev I. Surf Coat Technol, 1997; 97: 182
[2] Barshilia H C, Selvakumar N, Deepthi B, Rajam K S. Surf Coat Technol, 2006; 201: 2193
[3] Budna K P, Neidhardt J, Mayrhofer P H, Mitterer C. Vacuum, 2008; 82: 771
[4] Choi E Y, Kang M C, Kwon D H, Dong Woo, Kim K H. Mater Processing Technol, 2007; 188: 566
[5] Homhuan P, Chaiyakun S, Thonggoom R, Panich N, Tungasmita S. Mater Trans, 2010; 51: 1651
[6] Benkahoul M, Robin P, Gujrathi S C, Martinu L, Klemberg-Sapieha J E. Surf Coat Technol, 2008; 202: 3975
[7] Fuentes G G, de Cerio M J D, Garcia J A, Martinez R, Bueno R, Rodriguez R J, Rico M, Montala F, Qin Y. Surf Coat Technol, 2008; 203: 670
[8] Kim K H, Choi E Y, Hong S G, Park B G, Yoon J H, Yong J H. Surf Coat Technol, 2006; 201: 4068
[9] Lyo I W, Ahn H S, Lim D S. Surf Coat Technol, 2003; 163: 413
[10] Suszko T, Gulbinski W, Jagielski J. Surf Coat Technol, 2005; 194: 319
[11] Tian S F. PhD Dissertation, Harbin Institute of Technology, 2013
[11] (田首夫. 哈尔滨工业大学博士学位论文, 2013)
[12] Jacob K T, Raj S, Rannesh L. Int J Mater Res, 2007; 98: 776
[13] Fang Q F, Yang J F, Yuan Z G, Zhang G G, Wang X P. Mater Res Bull, 2009; 44: 1948
[14] Bertóti I. Surf Coat Technol, 2002; 151-152: 194
[15] Sanjinés R, Wiemer C, Almeida J, Lévy F. Thin Solid Films, 1996; 290-291: 334
[16] de Vries J E, Yao H C, Baird R J, Gandhi H S. J Catal, 1983; 84: 8
[17] Liu C H, Du X S, Wang D Z, Huang N K, Yang B. J Funct Mater, 2007; 38: 176
[17] (刘春海, 杜晓松, 汪德志, 黄宁康, 杨 斌. 功能材料, 2007; 38: 176)
[18] Wan X S, Zhao S S, Yang Y, Gong J, Sun C. Surf Coat Technol, 2010; 204: 1800
[19] Pande C S, Masumura R A, Armstrong R W. Nanostruct Mater, 1993; 2: 323
[20] Wang C C, Peng C Q, Feng Y, Wei X F. Chin J Nonferrous Met, 2012; 22: 1945
[20] (王常川, 彭超群, 冯 艳, 韦小凤. 中国有色金属学报, 2012; 22: 1945)
[21] Blau P J. Wear, 1982; 81: 187
[1] 黄鼎, 乔岩欣, 杨兰兰, 王金龙, 陈明辉, 朱圣龙, 王福会. 基体表面喷丸处理对纳米晶涂层循环氧化行为的影响[J]. 金属学报, 2023, 59(5): 668-678.
[2] 梁琛, 王小娟, 王海鹏. 快速凝固Ti-Al-Nb合金B2相形成机制与显微力学性能[J]. 金属学报, 2022, 58(9): 1169-1178.
[3] 曹庆平, 吕林波, 王晓东, 蒋建中. 物理气相沉积制备金属玻璃薄膜及其力学性能的样品尺寸效应[J]. 金属学报, 2021, 57(4): 473-490.
[4] 刘明, 严富文, 高诚辉. 渐进法向力对金属材料微米划痕响应的影响[J]. 金属学报, 2021, 57(10): 1333-1342.
[5] 邓聪坤,江鸿翔,赵九洲,何杰,赵雷. Ag-Ni偏晶合金凝固过程研究[J]. 金属学报, 2020, 56(2): 212-220.
[6] 刘艳梅, 王铁钢, 郭玉垚, 柯培玲, 蒙德强, 张纪福. Ti-B-N纳米复合涂层的设计、制备及性能[J]. 金属学报, 2020, 56(11): 1521-1529.
[7] 刘海霞, 陈金豪, 陈杰, 刘光磊. NaCl溶液腐蚀后304不锈钢的射流空蚀特征[J]. 金属学报, 2020, 56(10): 1377-1385.
[8] 李文涛,王振玉,张栋,潘建国,柯培玲,汪爱英. 电弧复合磁控溅射结合热退火制备Ti2AlC涂层[J]. 金属学报, 2019, 55(5): 647-656.
[9] 吴厚朴,田修波,张新宇,巩春志. 双脉冲HiPIMS放电特性及CrN薄膜高速率沉积[J]. 金属学报, 2019, 55(3): 299-307.
[10] 杨莎莎,杨峰,陈明辉,牛云松,朱圣龙,王福会. N掺杂对磁控溅射Ta涂层微观结构与耐磨损性能的影响[J]. 金属学报, 2019, 55(3): 308-316.
[11] 时惠英, 杨超, 蒋百灵, 黄蓓, 王迪. 双脉冲磁控溅射峰值靶电流密度对TiN薄膜结构与力学性能的影响[J]. 金属学报, 2018, 54(6): 927-934.
[12] 翟斌, 周凯, 吕鹏, 王海鹏. 自由落体条件下Ti-6Al-4V合金微液滴的快速凝固研究[J]. 金属学报, 2018, 54(5): 824-830.
[13] 陈占兴,丁宏升,刘石球,陈瑞润,郭景杰,傅恒志. 直流电流对Ti-48Al-2Cr-2Nb合金组织和性能的影响[J]. 金属学报, 2017, 53(5): 583-591.
[14] 楼白杨,王宇星. Mo含量对CrMoAlN薄膜微观结构和摩擦磨损性能的影响*[J]. 金属学报, 2016, 52(6): 727-733.
[15] 隋旭东,李国建,王强,秦学思,周向葵,王凯,左立建. 钛合金切削用Ti1-xAlxN涂层的制备及其切削性能研究*[J]. 金属学报, 2016, 52(6): 741-746.