Please wait a minute...
金属学报  2015, Vol. 51 Issue (3): 371-377    DOI: 10.11900/0412.1961.2014.00549
  论文 本期目录 | 过刊浏览 |
Mo含量对CrMoN复合涂层的组织结构和性能的影响
齐东丽, 雷浩, 范迪, 裴志亮, 宫骏, 孙超
中国科学院金属研究所, 沈阳 110016
EFFECT OF Mo CONTENT ON THE MICROSTRUC-TURE AND PROPERTIES OF CrMoN COMPOSITE COATINGS
QI Dongli, LEI Hao, FAN Di, PEI Zhiliang, GONG Jun, SUN Chao
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
全文: PDF(4694 KB)   HTML
摘要: 采用直流反应磁控溅射技术在M2高速钢基片上制备了不同Mo含量的CrMoN复合涂层, 研究了Mo含量的变化对CrMoN复合涂层成分、相结构、化学价态、截面形貌、显微硬度和摩擦性能等的影响.结果表明, 随着Mo含量的增加, CrMoN复合涂层的相结构先转变为以fcc-CrN相为基础的(Cr, Mo)N置换式固溶体, 后转变为以fcc-g-Mo2N相为主的混合相, 当Mo含量为69.3% (原子分数)时, 伴有少量的bcc-Mo相生成; CrMoN复合涂层的显微硬度先增加后降低, 在Mo含量为45.4%时具有最高值; 当Mo含量大于45.4%时, 在与对磨副摩擦过程中会生成大量的MoO3相, 降低了摩擦系数和磨损率.
关键词 CrMoN复合涂层磁控溅射显微硬度摩擦系数    
Abstract:Ceramic coatings are usually used as protective coatings to improve performance and durability of tools and components now. Compared with conventional TiN based hard coating, CrN based coating like Cr-X-N (X=Ti, Al, Si, C, B, Ta, Nb, Ni) is a more interesting choice because of low friction coefficient, superior oxidation resistance and excellent corrosion resistance under severe environment conditions. The CrMoN is among these coatings and attractive since self-lubricating phase MoO3 may be formed in tribological process. However the effect of Mo content on structure and tribological properties of CrMoN coatings is not still clear. In the present study, CrMoN composite coatings with different Mo content were deposited on M2 high speed steel (HSS) substrates by DC reactive magnetron sputtering. The effect of Mo content on the microstructure and properties was investigated systematically, including the chemical composition, phase structure, chemical valence, cross-section morphologies, microhardness and tribological properties. The results showed that the phase transformation of the as-deposited coatings occurred with the increase of Mo content. The phase structure changed to (Cr, Mo)N substitutional solid solution based on CrN-type firstly, and then to mixed phase with g-Mo2N as main phase, and a small amount of elemental bcc-Mo phase appeared when the Mo content is 69.3%. The microhardness of the CrMoN composite coatings always increased until the highest hardness when the Mo content reached to 45.4%, and then decreased; a relatively low friction coefficient was obtained compared with that of the CrN coating when more than 45.4%Mo content was doped. The reason is that the more MoO3 lubricant phase could be formed in tribological process.
Key wordsCrMoN composite coating    magnetron sputtering    microhardness    friction coefficient
    
ZTFLH:  TG172  
基金资助:*国家重点基础研究发展计划项目2012CB625100, 国家自然科学基金项目51171197, 以及辽宁省自然科学基金项目2013020132和2013010442-401资助
Corresponding author: Correspondent: GONG Jun, professor, Tel: (024)83978232, E-mail: jgong@imr.ac.cn     E-mail: jgong@imr.ac.cn
作者简介: 齐东丽, 男, 1978年生, 博士生

引用本文:

齐东丽, 雷浩, 范迪, 裴志亮, 宫骏, 孙超. Mo含量对CrMoN复合涂层的组织结构和性能的影响[J]. 金属学报, 2015, 51(3): 371-377.
QI Dongli, LEI Hao, FAN Di, PEI Zhiliang, GONG Jun, SUN Chao. EFFECT OF Mo CONTENT ON THE MICROSTRUC-TURE AND PROPERTIES OF CrMoN COMPOSITE COATINGS. Acta Metall Sin, 2015, 51(3): 371-377.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2014.00549      或      https://www.ams.org.cn/CN/Y2015/V51/I3/371

Images/0895-3988-371/imgDC5B  磁控溅射装置示意图
Images/0895-3988-371/grpDCC9  不同Mo含量CrMoN复合涂层的XRD谱
Images/0895-3988-371/grpDD38  fcc结构晶格常数随Mo含量的变化
Images/0895-3988-371/imgDD58  不同Mo含量CrMoN复合涂层的截面SEM像
Images/0895-3988-371/grpE026  CrMoN复合涂层No.2和No.6的XPS谱
Images/0895-3988-371/grpE085  不同Mo含量CrMoN复合涂层的摩擦系数和磨损率
Images/0895-3988-371/grpE096  不同Mo含量CrMoN复合涂层的磨痕表面轮廓
Images/0895-3988-371/imgE0B6  不同Mo含量CrMoN复合涂层的磨痕表面SEM像
[1] Navinšek B, Panjan P, Milošev I. Surf Coat Technol, 1997; 97: 182
[2] Barshilia H C, Selvakumar N, Deepthi B, Rajam K S. Surf Coat Technol, 2006; 201: 2193
[3] Budna K P, Neidhardt J, Mayrhofer P H, Mitterer C. Vacuum, 2008; 82: 771
[4] Choi E Y, Kang M C, Kwon D H, Dong Woo, Kim K H. Mater Processing Technol, 2007; 188: 566
[5] Homhuan P, Chaiyakun S, Thonggoom R, Panich N, Tungasmita S. Mater Trans, 2010; 51: 1651
[6] Benkahoul M, Robin P, Gujrathi S C, Martinu L, Klemberg-Sapieha J E. Surf Coat Technol, 2008; 202: 3975
[7] Fuentes G G, de Cerio M J D, Garcia J A, Martinez R, Bueno R, Rodriguez R J, Rico M, Montala F, Qin Y. Surf Coat Technol, 2008; 203: 670
[8] Kim K H, Choi E Y, Hong S G, Park B G, Yoon J H, Yong J H. Surf Coat Technol, 2006; 201: 4068
[9] Lyo I W, Ahn H S, Lim D S. Surf Coat Technol, 2003; 163: 413
[10] Suszko T, Gulbinski W, Jagielski J. Surf Coat Technol, 2005; 194: 319
[11] Tian S F. PhD Dissertation, Harbin Institute of Technology, 2013 (田首夫. 哈尔滨工业大学博士学位论文, 2013)
[12] Jacob K T, Raj S, Rannesh L. Int J Mater Res, 2007; 98: 776
[13] Fang Q F, Yang J F, Yuan Z G, Zhang G G, Wang X P. Mater Res Bull, 2009; 44: 1948
[14] Bertóti I. Surf Coat Technol, 2002; 151-152: 194
[15] Sanjinés R, Wiemer C, Almeida J, Lévy F. Thin Solid Films, 1996; 290-291: 334
[16] de Vries J E, Yao H C, Baird R J, Gandhi H S. J Catal, 1983; 84: 8
[17] Liu C H, Du X S, Wang D Z, Huang N K, Yang B. J Funct Mater, 2007; 38: 176 (刘春海, 杜晓松, 汪德志, 黄宁康, 杨 斌. 功能材料, 2007; 38: 176)
[18] Wan X S, Zhao S S, Yang Y, Gong J, Sun C. Surf Coat Technol, 2010; 204: 1800
[19] Pande C S, Masumura R A, Armstrong R W. Nanostruct Mater, 1993; 2: 323
[20] Wang C C, Peng C Q, Feng Y, Wei X F. Chin J Nonferrous Met, 2012; 22: 1945 (王常川, 彭超群, 冯 艳, 韦小凤. 中国有色金属学报, 2012; 22: 1945)
[21] Blau P J. Wear, 1982; 81: 187
[1] 邓聪坤,江鸿翔,赵九洲,何杰,赵雷. Ag-Ni偏晶合金凝固过程研究[J]. 金属学报, 2020, 56(2): 212-220.
[2] 李文涛,王振玉,张栋,潘建国,柯培玲,汪爱英. 电弧复合磁控溅射结合热退火制备Ti2AlC涂层[J]. 金属学报, 2019, 55(5): 647-656.
[3] 杨莎莎,杨峰,陈明辉,牛云松,朱圣龙,王福会. N掺杂对磁控溅射Ta涂层微观结构与耐磨损性能的影响[J]. 金属学报, 2019, 55(3): 308-316.
[4] 吴厚朴,田修波,张新宇,巩春志. 双脉冲HiPIMS放电特性及CrN薄膜高速率沉积[J]. 金属学报, 2019, 55(3): 299-307.
[5] 时惠英, 杨超, 蒋百灵, 黄蓓, 王迪. 双脉冲磁控溅射峰值靶电流密度对TiN薄膜结构与力学性能的影响[J]. 金属学报, 2018, 54(6): 927-934.
[6] 翟斌, 周凯, 吕鹏, 王海鹏. 自由落体条件下Ti-6Al-4V合金微液滴的快速凝固研究[J]. 金属学报, 2018, 54(5): 824-830.
[7] 陈占兴,丁宏升,刘石球,陈瑞润,郭景杰,傅恒志. 直流电流对Ti-48Al-2Cr-2Nb合金组织和性能的影响[J]. 金属学报, 2017, 53(5): 583-591.
[8] 楼白杨,王宇星. Mo含量对CrMoAlN薄膜微观结构和摩擦磨损性能的影响*[J]. 金属学报, 2016, 52(6): 727-733.
[9] 隋旭东,李国建,王强,秦学思,周向葵,王凯,左立建. 钛合金切削用Ti1-xAlxN涂层的制备及其切削性能研究*[J]. 金属学报, 2016, 52(6): 741-746.
[10] 连峰,臧路苹,项秋宽,张会臣. 超疏水钛合金表面在人工海水中的摩擦性能*[J]. 金属学报, 2016, 52(5): 592-598.
[11] 吴法宇,李建伟,齐羿,丁梧桐,樊子铭,周艳文. 粉末靶射频磁控溅射非晶Al2O3薄膜的制备与性能研究*[J]. 金属学报, 2016, 52(12): 1595-1600.
[12] 丁杰, 张志明, 王俭秋, 韩恩厚, 唐伟宝, 张茂龙, 孙志远. 三代核电接管安全端异种金属焊接接头的显微表征[J]. 金属学报, 2015, 51(4): 425-439.
[13] 濮晟, 谢光, 郑伟, 王栋, 卢玉章, 楼琅洪, 冯强. W和Re对固溶态镍基单晶高温合金变形和再结晶的影响*[J]. 金属学报, 2015, 51(2): 239-248.
[14] 崔文芳,曹栋,秦高梧. 磁控溅射沉积Ti/TiN多层膜的组织特征及耐磨损性能*[J]. 金属学报, 2015, 51(12): 1531-1537.
[15] 杨超,蒋百灵,冯林,郝娟. 靶面放电特性对沉积粒子离化率及沉积行为的影响*[J]. 金属学报, 2015, 51(12): 1523-1530.