|
|
Ti2AlNb异形粉末环件的轧制成形与性能研究 |
卢正冠1,2,吴杰1,徐磊1( ),崔潇潇1,杨锐1 |
1. 中国科学院金属研究所 沈阳 110016 2. 中国科学技术大学材料科学与工程学院 沈阳 110016 |
|
Ring Rolling Forming and Properties of Ti2AlNb Special Shaped Ring Prepared by Powder Metallurgy |
Zhengguan LU1,2,Jie WU1,Lei XU1( ),Xiaoxiao CUI1,Rui YANG1 |
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2. School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China |
引用本文:
卢正冠,吴杰,徐磊,崔潇潇,杨锐. Ti2AlNb异形粉末环件的轧制成形与性能研究[J]. 金属学报, 2019, 55(6): 729-740.
Zhengguan LU,
Jie WU,
Lei XU,
Xiaoxiao CUI,
Rui YANG.
Ring Rolling Forming and Properties of Ti2AlNb Special Shaped Ring Prepared by Powder Metallurgy[J]. Acta Metall Sin, 2019, 55(6): 729-740.
[1] | Banerjee D, Gogia A K, Nandi T K, et al. A new ordered orthorhombic phase in a Ti3Al-Nb alloy [J]. Acta Metall., 1988, 36: 871 | [2] | Germann L, Banerjee D, Guédou J Y, et al. Effect of composition on the mechanical properties of newly developed Ti2AlNb-based titanium aluminide [J]. Intermetallics, 2005, 13: 920 | [3] | Kumpfert J. Intermetallic alloys based on orthorhombic titanium aluminide [J]. Adv. Eng. Mater., 2001, 3: 851 | [4] | Shen J, Feng A H. Recent advances on microstructural controlling and hot forming of Ti2AlNb-based alloys [J]. Acta Metall. Sin., 2013, 49: 1286 | [4] | (沈 军, 冯艾寒. Ti2AlNb基合金微观组织调制及热成形研究进展 [J]. 金属学报, 2013, 49: 1286) | [5] | Chen W, Li J W, Xu L, et al. Development of Ti2AlNb alloys: Opportunities and challenges [J]. Adv. Mater. Proc., 2014, 172: 23 | [6] | Emura S, Araoka A, Hagiwara M. B2 grain size refinement and its effect on room temperature tensile properties of a Ti-22Al-27Nb orthorhombic intermetallic alloy [J]. Scr. Mater., 2003, 48: 629 | [7] | Tang F, Nakazawa S, Hagiwara M. The effect of quaternary additions on the microstructures and mechanical properties of orthorhombic Ti2AlNb-based alloys [J]. Mater. Sci. Eng., 2002, A329-331: 492 | [8] | Wang Y. The study on alloying, hot deformation behaviors and mechanical properties of Ti2AlNb based alloys [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2012 | [8] | (王 永. Ti2AlNb基合金的合金化、热加工及力学性能研究 [D]. 沈阳: 中国科学院金属研究所, 2012) | [9] | Du G, Cui L L, Lei Q, et al. Research and development of orthorhombic titanium aluminide [J]. Mater. China, 2018, 37: 68 | [9] | (杜 刚, 崔林林, 雷 强等. O相合金Ti2AlNb的研究进展 [J]. 中国材料进展, 2018, 37: 68) | [10] | Yang R. Advances and challenges of TiAl base alloys [J]. Acta Metall. Sin., 2015, 51: 129 | [10] | (杨 锐. 钛铝金属间化合物的进展与挑战 [J]. 金属学报, 2015, 51: 129) | [11] | Zhang J W, Li S Q, Liang X B, et al. Research and application of Ti3Al and Ti2AlNb based alloys [J]. Chin. J. Nonferrous Met., 2010, 20: 336 | [11] | (张建伟, 李世琼, 梁晓波等. Ti3Al和Ti2AlNb基合金的研究与应用 [J]. 中国有色金属学报, 2010, 20: 336) | [12] | Tai Q A, Li Z H, Sun L Q, et al. Application and prospect of aeroengine plastic forming technology [J]. Aeronaut. Manuf. Technol., 2014, (7): 34 | [12] | (邰清安, 李治华, 孙立群等. 航空发动机塑性成形技术的应用与展望 [J]. 航空制造技术, 2014, (7): 34) | [13] | Tian W, Zhong Y, Liang X B, et al. Relationship between forming process and microstructure-properties of Ti-22Al-25Nb alloy ring [J]. Trans. Mater. Heat Treat., 2014, 35(10): 49 | [13] | (田 伟, 钟 燕, 梁晓波等. Ti-22Al-25Nb合金环形件成形工艺与组织性能关系 [J]. 材料热处理学报, 2014, 35(10): 49) | [14] | Boehlert C J. The phase evolution and microstructural stability of an orthorhombic Ti-23Al-27Nb alloy [J]. J. Phase Equilib., 1999, 20: 101 | [15] | Lasalmonie A. Intermetallics: Why is it so difficult to introduce them in gas turbine engines? [J]. Intermetallics, 2006, 14: 1123 | [16] | Jiao X Y, Kong B B, Tao W, et al. Effects of annealing on microstructure and deformation uniformity of Ti-22Al-24Nb-0.5Mo laser-welded joints [J]. Mater. Des., 2017, 130: 166 | [17] | Xu L, Guo R P, Wu J, et al. Progress in hot isostatic pressing technology of titanium alloy powder [J]. Acta Metall. Sin., 2018, 54: 1537 | [17] | (徐 磊, 郭瑞鹏, 吴 杰等. 钛合金粉末热等静压近净成形研究进展 [J]. 金属学报, 2018, 54: 1537) | [18] | Samarov V, Seliverstov D, Froes F H. Fabrication of near-net-shape cost-effective titanium components by use of prealloyed powders and hot isostatic pressing [A]. Titanium Powder Metallurgy [C]. Oxford: Butterworth-Heinemann, 2015: 313 | [19] | Xu L, Guo R P, Bai C G, et al. Effect of hot isostatic pressing conditions and cooling rate on microstructure and properties of Ti-6Al-4V alloy from atomized powder [J]. J. Mater. Sci. Technol., 2014, 30: 1289 | [20] | Wu J, Xu L, Lu B, et al. Preparation of Ti2AlNb alloy by powder metallurgy and its rupture lifetime [J]. Chin. J. Mater. | [20] | (吴 杰, 徐 磊, 卢 斌等. 粉末冶金Ti2AlNb合金的制备及持久寿命 [J]. 材料研究学报, 2014, 28: 387) | [21] | Lu Z G, Wu J, Guo R P, et al. Hot deformation mechanism and ring rolling behavior of powder metallurgy Ti2AlNb intermetallics [J]. Acta Metall. Sin. (Engl. Lett.), 2017, 30: 621 | [22] | Qi C. GH4169-type disk parts forging method, involves baiting GH4169-type bar prepared by cast condition or powder metallurgy process into primary bar ingot, and adding bar ingot into box type heating furnace of specific degrees centigrade [P]. Chin Pat, CN102764837A, 2013 | [23] | Lu Z G, Wu J, Xu L, et al. Comparative study on hot workability of powder metallurgy Ti-22Al-24Nb-0.5Mo alloy [J]. Chin. J. Mater. Res., 2015, 29: 445 | [23] | (卢正冠, 吴 杰, 徐 磊等. 粉末Ti-22Al-24Nb-0.5Mo合金热变形能力的对比研究 [J]. 材料研究学报, 2015, 29: 445) | [24] | Wang S G, Wang S C, Zhang L. Application of high resolution transmission X-ray tomography in material science [J]. Acta Metall. Sin., 2013, 49: 897 | [24] | (王绍钢, 王苏程, 张 磊. 高分辨透射X射线三维成像在材料科学中的应用 [J]. 金属学报, 2013, 49: 897) | [25] | Qiu C L. Net-shape hot isostatic pressing of a nickel-based powder superalloy [D]. Birmingham: University of Birmingham, 2010 | [26] | Lang L H, Wang G, Huang X N, et al. Shielding effect of capsules and its impact on mechanical properties of P/M aluminium alloys fabricated by hot isostatic pressing [J]. Chin. J. Nonferrous Met., 2016, 26: 261 | [26] | (郎利辉, 王 刚, 黄西娜等. 包套在铝合金粉末热等静压成形中的屏蔽效应及其对性能的影响 [J]. 中国有色金属学报, 2016, 26: 261) | [27] | Wu J, Guo R P, Xu L, et al. Effect of hot isostatic pressing loading route on microstructure and mechanical properties of powder metallurgy Ti2AlNb alloys [J]. J. Mater. Sci. Technol., 2017, 33: 172 | [28] | Ma X, Zeng W D, Xu B, et al. Characterization of the hot deformation behavior of a Ti-22Al-25Nb alloy using processing maps Based on the murty criterion [J]. Intermetallics, 2012, 20: 1 | [29] | Wu Y, Liu G, Liu Z Q, et al. Formability and microstructure of Ti22Al24.5Nb0.5Mo rolled sheet within hot gas bulging tests at constant equivalent strain rate [J]. Mater. Des., 2016, 108: 298 | [30] | Jia J B, Zhang K F, Liu L M, et al. Hot deformation behavior and processing map of a powder metallurgy Ti-22Al-25Nb alloy [J]. J. Alloys Compd., 2014, 600: 215 | [31] | Yoshizawa M, Ohsawa H. Evaluation of strain-rate sensitivity in superplastic compressive deformation [J]. J. Mater. Process. Technol., 1997, 68: 206 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|