Please wait a minute...
金属学报  2009, Vol. 45 Issue (5): 553-558    
  论文 本期目录 | 过刊浏览 |
含W型10%Cr超超临界钢中δ--铁素体的微观结构及其对力学性能的影响
胡小强;肖纳敏;罗兴宏;李殿中
(中国科学院金属研究所沈阳材料科学国家(联合)实验室; 沈阳 110016)
EFFECTS OF δ–FERRITE ON THE MICROSTRUCTURE AND MECHANICAL PROPERTIES IN A TUNGSTEN-ALLOYED 10%Cr ULTRA–SUPERCRITICAL STEEL
HU Xiaoqiang; XIAO Namin; LUO Xinghong; LI Dianzhong
Shenyang National Laboratory for Materials Science; Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110016
引用本文:

胡小强 肖纳敏 罗兴宏 李殿中. 含W型10%Cr超超临界钢中δ--铁素体的微观结构及其对力学性能的影响[J]. 金属学报, 2009, 45(5): 553-558.
, , , . EFFECTS OF δ–FERRITE ON THE MICROSTRUCTURE AND MECHANICAL PROPERTIES IN A TUNGSTEN-ALLOYED 10%Cr ULTRA–SUPERCRITICAL STEEL[J]. Acta Metall Sin, 2009, 45(5): 553-558.

全文: PDF(954 KB)  
摘要: 

采用光学显微镜、扫描电镜和能谱分析研究了含W型10%Cr(质量分数)超超临界钢中δ--铁素体的组织形貌与微观结构. 结果表明, δ--铁素体的生成机理与奥氏体化加热温度密切相关. 当加热温度较低时, 极少量δ--铁素体在原奥氏体晶粒内部优先形核生长, 呈针状分布; 当加热温度较高时,δ--铁素体在原奥氏体晶界处形核, 快速生长, 呈多边形分布, 转变时发生溶质组元再分配. 两种形态的铁素体均明显降低了含W型10%Cr超超临界钢的冲击韧性, 但是, 针状δ--铁素体降低冲击韧性的幅度远大于多边形δ--铁素体;即使针状δ--铁素体的体积分数极少, 也会对钢的力学性能造成极大影响.

关键词 δ-铁素体超超临界钢微观组织力学性能    
Abstract

The tungsten–alloyed 10%Cr (mass fraction) steel, one of the advanced 9%—12%Cr steels, has been widely considered as a preferred candidate for making key components in ultra–supercritical (USC) steam turbines. Due to large amounts of ferrite former in the steel, the formation temperature of δ–ferrite is lowered down, and therefore δ–ferrite is apt to be produced during hot working. However, understanding of the formation mechanism of δ–ferrite and its influence on the mechanic properties of ultra–supercritical steels is still either ambiguous or conflicting. To clarify this problem, in this paper, the microstructure and morphology of δ–ferrite were investigated by optical microscope, scanning electron microscope and energy dispersive spectrum (EDS) analysis. Also, the mechanical properties including the tensile strength, ductility and impact toughness of the studied steel with various volume fraction of δ–ferrite were tested at room temperature. Experimental results indicate that the transformation mechanism of δ–ferrite is closely dependent on the austenitizing temperature. Extremely small amounts of acicular δ–ferrite preferentially nucleate and grow inside the prior austenite grains, if the austenitizing temperature is just a little higher than the equilibrium transformation point of δ–ferrite. While, as the austenitizing temperature increases further, some polygonal δ–ferrites subsequently form on prior grain boundaries and grow quickly. Meanwhile, the repartitioning of solute elements occurrs between δ–ferrite and prior austenite. Both acicular and polygonal δ–ferrites will damage the impact toughness of the studied steel. And in spite of its few amounts, the detrimental effect of acicular δ–ferrite on the mechanical properties, especially the impact toughness, is more severe than that of polygonal δ–ferrite. Additionally, the tensile strength and the area reduction of the studied steel decrease as the amount of δ–ferrite increases, while the elongation hardly changes with the amount of δ–ferrite increasing. As a conclusion, accurately controlling the austenitizing temperature to prevent from the formation of any δ–ferrite is not only necessary but also very important in obtaining perfect overall mechanical properties.

Key wordsδ-ferrite    ultra-supercritcal steel    microstructure    mechanical property
收稿日期: 2008-09-01     
ZTFLH: 

TG142.1

 
基金资助:

振兴东北老工业基地基金资助项目DBZX--1--010

作者简介: 胡小强, 男, 1983年生, 博士生

[1] Masuyama F. ISIJ Int, 2001; 6: 612
[2] Knezevic V, Sauthoff G, Vilk J, Inden G, Schneider A, Agamennone R, Blum W, Wang Y, Scholz A, Berger C, Ehlers J, Singheiser L. ISIJ Int, 2002; 12: 1505
[3] Viswanathan R, Bakker W. J Mater Eng Perform, 2001; 10: 81
[4] Viswanathan R, Bakker W. J Mater Eng Perform, 2001; 10: 96
[5] Ryu S H, Yu J. Metall Mater Trans, 1998; 29A: 1573
[6] Faulkner R G, Williams J A, Sanchez E G, Marshall A W. Mater Sci Technol, 2003; 19: 347
[7] Chandravathi K S, Laha K, Rao K B S, Mannan S L. Mater Sci Technol, 2001; 17: 559
[8] Onoro J. Int J Pressure Vessels Piping, 2006; 83: 540
[9] Tchizhik A A, Tchizhik T A, Tchizhik A A. J Mater Process Technol, 1998; 77: 226
[10] Bashu S A, Singh K, Rawat M S. Mater Sci Eng, 1990; A127: 7
[11] Cai G J, Andren H O, Svensson L E. Metall Mater Trans, 1997; 28A: 1417
[12] Anderko K, Schafer L, Materna–Morris E. J Nucl Mater, 1991; 179–181: 492
[13] Saroja S, Vijayalakshmi M, Raghunathan V S. Mater Sci Eng, 1991; A154: 59
[14] Kishore R, Singh R N, Sinha T K, Kashyap B P. J Nucl Mater, 1992; 195: 198
[15] Sun Z Y, Liu C M. Diffusion and Phase Transformation in Alloys. Shenyang: Northeast University Press, 2002:114
(孙振岩, 刘春明. 合金中的扩散与相变. 沈阳: 东北大学出版社, 2002: 114)
[16] Qi Z F. Diffusion and Phase Transformation in Solid Metals. Beijing: China Machine Press, 1998: 147
(戚正风. 固态金属中的扩散与相变. 北京: 机械工业出版社, 1998: 147)
[17] Zhang S H. Alloying Steels. Beijing: Metallurgical Industry Press, 1981: 206
(章守华. 合金钢. 北京: 冶金工业出版社, 1981: 206)

[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[6] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[7] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[9] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[10] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[11] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[12] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[13] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[14] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[15] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.