Please wait a minute...
金属学报  2009, Vol. 45 Issue (5): 536-540    
  论文 本期目录 | 过刊浏览 |
硫酸盐还原菌对18--8不锈钢点蚀行为的影响
李付绍1;安茂忠1;刘光洲2;段东霞2
1.哈尔滨工业大学化工学院; 哈尔滨 150001
2.海洋腐蚀与防护国防科技重点实验室; 青岛 266071
EFFECT OF SULFATE–REDUCING BACTERIA ON THE PITTING CORROSION BEHAVIOR OF 18–8 STAINLESS STEEL
LI Fushao1; AN Maozhong1; LIU Guangzhou2; DUAN Dongxia2
1.School of Chemical Engineering; Harbin Institute of Technology; Harbin 150001
2.State Key Laboratory for Marine Corrosion and Protection; Qingdao 266071
引用本文:

李付绍 安茂忠 刘光洲 段东霞. 硫酸盐还原菌对18--8不锈钢点蚀行为的影响[J]. 金属学报, 2009, 45(5): 536-540.
, , , . EFFECT OF SULFATE–REDUCING BACTERIA ON THE PITTING CORROSION BEHAVIOR OF 18–8 STAINLESS STEEL[J]. Acta Metall Sin, 2009, 45(5): 536-540.

全文: PDF(562 KB)  
摘要: 

利用原子力显微镜(AFM)和电化学方法研究了海水中硫酸盐还原菌(SRB)对18--8不锈钢(18--8SS)点蚀过程的影响. AFM探测显示, 微观蚀孔的生长速率在含SRB介质中明显高于在灭菌介质中. 阳极循环极化结果表明, SRB的代谢产物显著降低了18--8SS的点蚀电位和再钝化电位; 而且在含SRB介质中, 18--8SS在短时间内就能被活化, 表明SRB的代谢活动极大地促进了钝化层的破坏过程. 阴极极化曲线表明, 含SRB介质中单质硫或多态硫的还原是促使点蚀生长的主要因素, 其阴极还原电流密度可以达到很高的数值(>10 μA/cm2).

关键词 硫酸盐还原菌 点蚀 原子力显微镜 阳极循环极化 XPS分析    
Abstract

Pitting corrosion of stainless steels is a very complex process in the chloride–containing media with sulfate–reducing bacteria (SRB). Sulfate reduction by SRB results in the production of sulfur–containing species, which can significantly change the media state and ultimately affect both the pit–initiation (breakdown of passive film) and the pit–growth. In the present study, the effect of SRB on the pitting corrosion behavior of 18–8 stainless steel (18–8SS) in seawater was investigated by atomic force microscopy (AFM) and electrochemical methods. As the results show, 18–8SS can be quickly activated in the media with SRB, indicating that bacterial activities can accelerate greatly the process of breakdown of passive film; Measurements with AFM probe demonstrate that the rate of micropit growth of 18–8SS in the media with SRB is conspicuously higher than that in the sterilized media. As for the pitting corrosion mechanism, bacterial metabolites make the pit potential (Epit) and the repassivation potential (Erep) both decrease distinctly; However, Epit of 18–8SS is still more positive than the redox potential (Eh) of the media state, Erep of 18–8SS more positive than the reversible hydrogen electrode potential, and thus it is proposed that the localized free oxygen resulting from sulfidation of passive film in the media with SRB is the main factor which causes the breakdown of passive film; Subsequently, sulfur element or polysulfide in the media with SRB is the main factor which sustains the pit–growth, and the current density for cathodic reduction of sulfur element or polysulfide can reach to a very high level (>10 μA/cm2).

Key wordssulfate–reducing bacteria    pitting corrosion    atomic force microscopy    anodic cyclic polarization    XPS analyse
收稿日期: 2008-04-28     
ZTFLH: 

TG174.3

 
基金资助:

青岛市科技局资助项目YK010403

作者简介: 李付绍, 男, 1978年生, 博士生

[1] Newman R C, Webster B J, Kelly R G. ISIJ Int, 1991; 31:201
[2] Webster B J, Newman R C. Corros Sci, 1993; 35: 675
[3] Duan J Z, Hou B R, Yu Z G. Mater Sci Eng, 2006; C26:624
[4] Dominique T, Wolfgang S. In: Marcus P, Oudar J eds.,Corrosion Mechanisms in Theory and Practice, New York:Marcel Dekker Inc, 1995: 457
[5] van Ommen K F, Bryant R D, Laishley E J. Anaerobe, 1995; 1: 351
[6] Silva S D, Basseguy R, Bergel A. J Electroanal Chem,2004; 561: 93
[7] Dinh H T, Kuever J, Mubmann M, Hassel A W, Stratmann M, Widdel F. Nature, 2004; 427: 829
[8] King R A, Miller J D A. Nature, 1971; 233: 491
[9] Costello J A. S Afr J Sci, 1974; 70: 202
[10] Schaschl E. Mater Performance, 1980; 19: 9
[11] Silva S D, Basseguy R, Bergel A. Electrochim Acta, 2004;49: 4553
[12] Landoulsi J, Elkirat K, Richard C, Feron D, Pulvin S. Environ Sci Technol, 2008; 42: 2233
[13] Liu J H, Liang X, Li S M. Acta Metall Sin, 2005; 41: 545
(刘建华, 梁 馨, 李松梅. 金属学报, 2005; 41: 545)
[14] Cheng Q H, Wu Q S, Yu J F. China Guide to Grade of Iron and Steels. Beijing: Chinese Standard Press, 1994:515
(陈庆恒, 伍千思, 于吉福. 中国钢铁材料牌号手册. 北京: 中国标准出版社, 1994: 515)
[15] Postgate J R. The Sulfate Reducing Bacteria. 2nd ed, Cambridge: Cambridge University Press, 1984: 208
[16] Shibata T, Takeyama T. Corrosion, 1977; 33: 2431
[17] Chamriski I G, Burns G R, Webster B J, Laycock N J.Corrosion, 2004; 60: 658
[18] Marcus P, Oudar J. In: McCafferty E, Clayton C R, Oudar J eds., Fundamental Aspects of Corrosion Protection by Surface Modification, Pennington, NJ: The Electrochemi-
cal Society, 1984: 173
[19] Marcus P, Teissier A, Oudar J. Surf Sci, 11983; 29: 432
[20] Marcus P, Teissier A, Oudar J. Corros Sci, 1984; 24: 259
[21] Chen G, Clayton C R. J Electrochem Soc, 1997; 144: 3140
[22] Iverson W P. Science, 1967; 156: 1112
[23] Wagner C D, Riggs W M, Davis L E, Moulder J F. Hand Book of X–ray Photoelectron Spectroscopy. Eden Prairie, MN: Perkin Elmer Corporation Physical Electronics, 1979: 235

[1] 张奇亮, 王玉超, 李光达, 李先军, 黄一, 徐云泽. EH36钢在不同粒径沙砾冲击下的冲刷腐蚀耦合损伤行为[J]. 金属学报, 2023, 59(7): 893-904.
[2] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[3] 孙阳庭, 李一唯, 吴文博, 蒋益明, 李劲. CaMg掺杂下夹杂物对C70S6非调质钢点蚀行为的影响[J]. 金属学报, 2022, 58(7): 895-904.
[4] 吕晨曦, 孙阳庭, 陈斌, 蒋益明, 李劲. 恒电位脉冲技术对317L不锈钢点蚀行为及耐点蚀性能的影响[J]. 金属学报, 2021, 57(12): 1607-1613.
[5] 王力,董超芳,张达威,孙晓光,Thee Chowwanonthapunya,满成,肖葵,李晓刚. 合金元素对铝合金在泰国曼谷地区初期腐蚀行为的影响[J]. 金属学报, 2020, 56(1): 119-128.
[6] 李恺强, 杨璐嘉, 徐云泽, 王晓娜, 黄一. SO42-对模拟孔隙液中Q235B钢筋腐蚀行为的影响[J]. 金属学报, 2019, 55(4): 457-468.
[7] 冯浩,李花兵,路鹏冲,杨纯田,姜周华,武晓雷. 铜绿假单胞菌对CrCoNi中熵合金微生物腐蚀行为的影响[J]. 金属学报, 2019, 55(11): 1457-1468.
[8] 马歌, 左秀荣, 洪良, 姬颖伦, 董俊媛, 王慧慧. 深海用X70管线钢焊接接头腐蚀行为研究[J]. 金属学报, 2018, 54(4): 527-536.
[9] 舒韵, 闫茂成, 魏英华, 刘福春, 韩恩厚, 柯伟. X80管线钢表面SRB生物膜特征及腐蚀行为[J]. 金属学报, 2018, 54(10): 1408-1416.
[10] 卿永长,杨志炜,鲜俊,许进,闫茂成,吴堂清,于长坤,于利宝,孙成. 交流电和微生物共同作用下Q235钢的腐蚀行为*[J]. 金属学报, 2016, 52(9): 1142-1152.
[11] 范林,丁康康,郭为民,张彭辉,许立坤. 静水压力和预应力对新型Ni-Cr-Mo-V高强钢腐蚀行为的影响*[J]. 金属学报, 2016, 52(6): 679-688.
[12] 何岳,向嵩,石维,刘建敏,梁宇,陈朝轶. 冷拔珠光体钢的组织演变对其点蚀行为的影响*[J]. 金属学报, 2016, 52(12): 1536-1544.
[13] 杨建海,张玉祥,葛利玲,陈家照,张鑫. 2A14铝合金混合表面纳米化对电化学腐蚀行为的影响*[J]. 金属学报, 2016, 52(11): 1413-1422.
[14] 朴楠,陈吉,尹成江,孙成,张星航,武占文. 超细晶304L不锈钢在含Cl-溶液中点蚀行为的研究[J]. 金属学报, 2015, 51(9): 1077-1084.
[15] 陈雨来,罗照银,李静媛. 固溶温度对S32760双相不锈钢组织与耐点蚀性能的影响[J]. 金属学报, 2015, 51(9): 1085-1091.