Please wait a minute...
金属学报  2009, Vol. 45 Issue (4): 422-427    
  论文 本期目录 | 过刊浏览 |
电子封装微互连焊点力学行为的尺寸效应
尹立孟;杨艳;刘亮岐;张新平
华南理工大学材料科学与工程学院; 广州 510640
SIZE EFFECT OF MECHANICAL BEHAVIOR OF MINIATURE SOLDER JOINT INTERCONNECTIONS IN ELECTRONIC PACKAGING
YIN Limeng; YANG Yan; LIU Liangqi; ZHANG Xinping
School of Materials Science and Engineering; South China University of Technology; Guangzhou 510640
引用本文:

尹立孟 杨艳 刘亮岐 张新平. 电子封装微互连焊点力学行为的尺寸效应[J]. 金属学报, 2009, 45(4): 422-427.
, , , . SIZE EFFECT OF MECHANICAL BEHAVIOR OF MINIATURE SOLDER JOINT INTERCONNECTIONS IN ELECTRONIC PACKAGING[J]. Acta Metall Sin, 2009, 45(4): 422-427.

全文: PDF(1689 KB)  
摘要: 

研究了微互连模拟焊点在不同直径(d=200---575 μm)和长度(l=75---525 μm)匹配条件下准静态微拉伸的力学行为. 研究结果表明, 焊点几何尺度因子d/l对焊点内的力学拘束及接头强度有重要影响; d/l增大时导致焊点中力学拘束和应力三轴度的提高, 但接头强度并不完全符合Orowan近似公式的预测结果, 保持l恒定而增加d时会出现强度变小的尺寸效应. 研究结果还表明, 无论无铅还是含铅钎料, 其焊点拉伸强度与焊点体积(d2l)之间的变化关系符合反比例函数, 即σF-Joint=1/(Ad2l+B), 焊点的强度随焊点体积的减小而显著增大, 显示了焊点“越小越强”的“体积”尺寸效应.

关键词 电子封装 微互连焊点 尺寸效应 拉伸强度 约束效应    
Abstract

Mechanical behaviors of miniature solder joint interconnections with different scale matches, diameter (d) in the range of 200—575 μm and length (l) of 75—525 μm, were investigated by using quasi–static micro–tensile testing. The results show that the joint geometry scaling factor (d/l) plays an important role in influencing the mechanical constraint level and tensile strength of the solder joints. However, with increasing d/l, the tensile strength of the joints does not always increase and not always exhibit a similar trend to that predicted by Orowan approximation equation, but there is an inverse size effect on the solder joint strength. For both lead–free and lead–containing solders, the correlation between the tensile strength and volume of the solder joints largely follows inverse proportion function equation, i.e., σF−Joint = 1/(Ad2l) + B, where tensile strength of the solder joints increases obviously with the decrease of the solder joint volume and there is a so–called "solder joint volume effect", that is, the smaller the solder joint volume, the higher the solder joit strenth.

Key wordselectronic packaging    miniature solder joint interconnection    size effect    tensile strength    constraint effect
收稿日期: 2008-04-28     
ZTFLH: 

TG113

 
基金资助:

新世纪优秀人才计划资助项目NCET--04--0824

作者简介: 尹立孟, 男, 1976年生, 博士生

[1] Zhang X P, Yin L M, Yu C B. Chin J Mater Res, 2008; 22: 1
(张新平, 尹立孟, 于传宝. 材料研究学报, 2008; 22: 1)
[2] Yin L M, Zhang X P. Acta Electron Sin, 2008; 36: 1610
(尹立孟, 张新平. 电子学报, 2008; 36: 1610)
[3] Huang Z H, Conway P P, Jung E, Thomson R C, Liu C Q, Loeher T, Minkus M. J Electron Mater, 2006; 36: 1761
[4] Arzt E. Acta Mater, 1998; 46: 5611
[5] Zimprich P, Betzwar–Kotas A, Khatibi G, Weiss B, Ipser H. J Mate Sci: Mater Electron, 2008; 19: 383
[6] Wang F J, Qian Y Y, Ma X. Acta Metall Sin, 2005; 41: 775
(王凤江, 钱乙余, 马 鑫. 金属学报, 2005; 41: 775)
[7] Islam M N, Sharif A, Chan Y C. J Electron Mater, 2005; 34: 143
[8] Chen H T, Wang C Q, Yan C, Huang Y, Tian Y H. J Electron Mater, 2007; 36: 33
[9] Sharif A, Chan Y C, Islam R A. Mater Sci Eng, 2004; B106: 120
[10] Wong C K, Pang J H L, Tew J W, Lok B K, Lu H J, Ng F L, Sun Y F. Microelectron Relia, 2008; 48: 611
[11] Ho C E, Lin Y W, Yang S C, Kao C R, Jiang D S. J Electron Mater, 2006; 35: 1017
[12] Wiese S, Roellig M, Mueller M, Bennemann S, Petzold M, Wolter K J. Proc 57th Electronic Components and Technology Conf, May 29—June 1, 2007, Reno, Nevada, USA, 2007: 548
[13] Ren F, Nah J W, Suh J O, Tu K N, Xiong B S, Xu L H, Pang J H L. Inter Symp Adv Pack Mater: Process, Properties and Interfaces, 2005; 16–18: 66
[14] Ren F, Nah J W, Tu K N, Xiong B S, Xu L H, Pang J H L. Appl Phys Lett, 2006; 89: 1
[15] Plumbridge W J. J Mater Sci, 1996; 31: 2501
[16] Kim K S, Huh S H, Suganuma K. Microelectron Relia, 2003; 43: 259
[17] Saxton H J, West A J, Barrett C R. Metall Trans, 1971; 2: 999
[18] West A J, Saxton H J, Tetelman A S, Barrett C R. Metall Trans, 1971; 2: 1009
[19] Courtney T H. Mechanical Behavior of Materials, New York: McGraw Hill, 1990: 201
[20] Bridgman P W. Studies in Large Plastic Flow and Fracture. Cambridge: Harvard University Press, 1964: 9

[1] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[2] 赵亚峰, 刘苏杰, 陈云, 马会, 马广财, 郭翼. 铁素体-贝氏体双相钢韧性断裂过程中的夹杂物临界尺寸及孔洞生长[J]. 金属学报, 2023, 59(5): 611-622.
[3] 于少霞, 王麒, 邓想涛, 王昭东. GH3600镍基高温合金极薄带的制备及尺寸效应[J]. 金属学报, 2023, 59(10): 1365-1375.
[4] 周洪宇, 冉珉瑞, 李亚强, 张卫冬, 刘俊友, 郑文跃. 颗粒尺寸对金刚石/Al封装基板热物性的影响[J]. 金属学报, 2021, 57(7): 937-947.
[5] 曹庆平, 吕林波, 王晓东, 蒋建中. 物理气相沉积制备金属玻璃薄膜及其力学性能的样品尺寸效应[J]. 金属学报, 2021, 57(4): 473-490.
[6] 屈瑞涛, 王晓地, 吴少杰, 张哲峰. 金属玻璃的剪切带变形与断裂机制研究进展[J]. 金属学报, 2021, 57(4): 453-472.
[7] 王霞, 王维, 杨光, 王超, 任宇航. 激光沉积薄壁结构热力演化的尺寸效应[J]. 金属学报, 2020, 56(5): 745-752.
[8] 陶然, 赵玉涛, 陈刚, 怯喜周. 电磁场下原位合成纳米ZrB2 np/AA6111复合材料组织与性能研究[J]. 金属学报, 2019, 55(1): 160-170.
[9] 张广平, 陈红蕾, 罗雪梅, 张滨. 微纳米尺度金属导电材料热疲劳研究进展[J]. 金属学报, 2018, 54(3): 357-366.
[10] 马也飞, 宋竹满, 张思倩, 陈立佳, 张广平. 小尺度CA6NM马氏体不锈钢样品疲劳性能评价研究[J]. 金属学报, 2018, 54(10): 1359-1367.
[11] 杨蕊,潘艳,陈威,孙巧艳,肖林,孙军. 微尺度Ti-10V-2Fe-3Al单晶压缩变形行为及其微观机制*[J]. 金属学报, 2016, 52(2): 135-142.
[12] 孙军, 张金钰, 吴凯, 刘刚. Cu系纳米金属多层膜微柱体的形变与损伤及其尺寸效应*[J]. 金属学报, 2016, 52(10): 1249-1258.
[13] 黄晓旭. 金属强度的尺寸效应*[J]. 金属学报, 2014, 50(2): 137-140.
[14] 张金钰, 刘刚, 孙军. 纳米金属多层膜的变形与断裂行为及其尺寸效应*[J]. 金属学报, 2014, 50(2): 169-182.
[15] 安彤,秦飞,王晓亮. 焊锡接点IMC层微结构演化与力学行为[J]. 金属学报, 2013, 49(9): 1137-1142.