Please wait a minute...
金属学报  2009, Vol. 45 Issue (11): 1349-1355    
  论文 本期目录 | 过刊浏览 |
[011]取向镍基单晶合金蠕变特征
水丽1;2);金涛1);胡壮麒1)
1) 中国科学院金属研究所; 沈阳 110016
2) 沈阳理工大学材料科学与工程学院; 沈阳 110168
CREEP CHARACTERISTICS OF A Ni BASE SINGLE CRYSTAL SUPERALLOY WITH [011] ORIENTATION
SHUI Li1;2);  JIN Tao1);   HU Zhuangqi1)
1) Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110016\
2) School of Materials Science and Engineering; Shenyang Ligong University; Shenyang 110168
引用本文:

水丽 金涛 胡壮麒. [011]取向镍基单晶合金蠕变特征[J]. 金属学报, 2009, 45(11): 1349-1355.
, , . CREEP CHARACTERISTICS OF A Ni BASE SINGLE CRYSTAL SUPERALLOY WITH [011] ORIENTATION[J]. Acta Metall Sin, 2009, 45(11): 1349-1355.

全文: PDF(1101 KB)  
摘要: 

研究了一种[011]取向镍基单晶合金的拉伸蠕变特征及其变形期间的微观组织结构. 结果表明: 在750 ℃/680 MPa条件下, 合金的初期蠕变和稳态蠕变速率相对较高, 蠕变寿命较短. TEM观察显示, 蠕变期间的变形特征是1/2<110>位错在基体中运动, 发生反应形成1/3<112>超 Shockley不全位错切入γ´相后产生层错; 在870 ℃/500 MPa条件下, 蠕变中期出现不均匀滑移带并有大量超不全位错剪切γ´相, 使合金具有较高的应变速率; 在980 ℃/200 MPa条件下, 合金具有较长的蠕变寿命和较低的稳态蠕变速率. 不同Burgers矢量的位错相遇发生反应形成界面位错网, 位错网可以阻止位错切入γ´相, γ´相沿[010]方向扩散生长, 逐渐转变成筏形组织. 蠕变后期位错切入γ´相, 是合金变形的主要方式.

关键词 [011]取向镍基单晶合金拉伸蠕变位错    
Abstract

The creep behavior of a Ni base single crystal superalloy with [011] orientation under three conditions of temperature and stress level has been investigated. Creep deformation of the tested alloy occurs largely through dislocation activity in the γ matrix channel. Shearing of the γ´ precipitates is observed, while at higher temperature, this does not occur until late in life by means of the passage of superpartial dislocation.  At lower temperature (750 ℃) and high stress level, shearing of the  γ´ precipitates is observed in the relatively early creep through the passage of 1/3<112> dislocation, which leaves superlattice stacking faults (SSFs) in the precipitates. The creep behavior is closely related to microstructure evolution, the creep curve at 750 ℃ exhibits higher primary and steady creep rates, and thereby the creep life is shorter. Under the condition of 870 ℃ and 500 MPa, the steady-stage creep does not appear, it is suggested that the creep life is greatly influenced by the inhomogeneous slip band. At higher temperature and lower stress, such as 980 ℃ and 200 MPa, the alloy has longer creep life and lower steady creep rate. Observation of the dislocation configuration shows that the hexagonal dislocation network appears on the  γ/ γ´ interface at the early creep stage, the regular and denser dislocation networks can inhibit dislocation cutting into  γ´ phase and enhance the resistance of dislocation movement. In the later stage, $\gamma'$ precipitates are sheared by dislocation, which leads to an acceleration of creep rate.

Key words[011] orientation Ni base single crystal    tensile creep    dislocation
收稿日期: 2009-05-25     
ZTFLH: 

TG132.3

 
作者简介: 水丽, 女, 1963年生, 副教授, 博士

[1] Knowles D M, Chen Q Z. Mater Sci Eng, 2003; A356: 352
[2] Feller–Kniepmeier M, Kuttner T. Acta Metall Mater, 1994; 42: 3167
[3] Sass V, Glatzel U, Feller–Kniepmeier M. In: Kissinger R D, Deye D J, Anton D L, Cetel A D, Nathal M V, Ploolck T M, Woodford D A, eds, Superalloy 1996, Metal Park: TMS, 1996: 283
[4] Mackay R A, Maier R D. Metall Trans, 1982; 13A: 1747
[5] Liu J L, Jin T, Zhang J H, Hu Z Q. Acta Metall Sin, 2001; 37: 1233
(刘金来, 金涛, 张静华, 胡壮麒. 金属学报, 2001; 37: 1233)

[6] Caron P, Henderson P J, Khan T, McLean M. Scr Metall, 1986; 20: 875
[7] Muller L, Glatzel U, Feller–Kniepmeier M. Acta Metall Mater, 1992; 40: 1321
[8] Drew G L, Reed R C. In: Green K A, Pollock T M, Harada H, Howson T E, Schirra J J, Walston S, eds., Superalloys 2004, Matal Park: TMS, 2004: 127
[9] Kuttner T, Feller–Kniepmeier M. Mater Sci Eng, 1994; A188: 147
[10] Nitz A, Lagerpusch U, Nembactn E. Acta Mater, 1998; 46: 4769
[11] SherryA H, Pilkington R. Mater Sci Eng, 1993; A172: 51
[12] Gunturi S S K, MacLachlan D W, Knowles D M. Mater Sci Eng, 2000; A289: 289

[1] 韩卫忠, 卢岩, 张雨衡. 体心立方金属韧脆转变机制研究进展[J]. 金属学报, 2023, 59(3): 335-348.
[2] 韩冬, 张炎杰, 李小武. 短程有序对高层错能Cu-Mn合金拉-拉疲劳变形行为及损伤机制的影响[J]. 金属学报, 2022, 58(9): 1208-1220.
[3] 田妮, 石旭, 刘威, 刘春城, 赵刚, 左良. 预拉伸变形对欠时效7N01铝合金板材疲劳断裂的影响[J]. 金属学报, 2022, 58(6): 760-770.
[4] 郑士建, 闫哲, 孔祥飞, 张瑞丰. 纳米金属层状材料强塑性的界面调控[J]. 金属学报, 2022, 58(6): 709-725.
[5] 高川, 邓运来, 王冯权, 郭晓斌. 蠕变时效对欠时效7075铝合金力学性能的影响[J]. 金属学报, 2022, 58(6): 746-759.
[6] 武晓雷, 朱运田. 异构金属材料及其塑性变形与应变硬化[J]. 金属学报, 2022, 58(11): 1349-1359.
[7] 安旭东, 朱特, 王茜茜, 宋亚敏, 刘进洋, 张鹏, 张钊宽, 万明攀, 曹兴忠. 奥氏体316不锈钢中位错与氢的相互作用机理[J]. 金属学报, 2021, 57(7): 913-920.
[8] 兰亮云, 孔祥伟, 邱春林, 杜林秀. 基于多尺度力学实验的氢脆现象的最新研究进展[J]. 金属学报, 2021, 57(7): 845-859.
[9] 石增敏, 梁静宇, 李箭, 王毛球, 方子帆. 板条马氏体拉伸塑性行为的原位分析[J]. 金属学报, 2021, 57(5): 595-604.
[10] 梁晋洁, 高宁, 李玉红. 体心立方Fe中微裂纹与间隙型位错环相互作用的分子动力学模拟[J]. 金属学报, 2020, 56(9): 1286-1294.
[11] 李美霖, 李赛毅. 金属Mg二阶锥面<c+a>刃位错运动特性的分子动力学模拟[J]. 金属学报, 2020, 56(5): 795-800.
[12] 李亦庄,黄明欣. 基于中子衍射和同步辐射X射线衍射的TWIP钢位错密度计算方法[J]. 金属学报, 2020, 56(4): 487-493.
[13] 许擎栋, 李克俭, 蔡志鹏, 吴瑶. 脉冲磁场对TC4钛合金微观结构的影响及其机理探究[J]. 金属学报, 2019, 55(4): 489-495.
[14] 高钰璧, 丁雨田, 陈建军, 许佳玉, 马元俊, 张东. 挤压态GH3625合金冷变形过程中的组织和织构演变[J]. 金属学报, 2019, 55(4): 547-554.
[15] 陈丽群, 邱正琛, 于涛. Ru对NiAl[100](010)刃型位错电子结构的影响[J]. 金属学报, 2019, 55(2): 223-228.