Please wait a minute...
金属学报  2009, Vol. 45 Issue (11): 1356-1363    
  论文 本期目录 | 过刊浏览 |
环境介质对40Cr结构钢高周和超高周疲劳行为的影响
钱桂安; 洪友士
中国科学院力学研究所非线性力学国家重点实验室; 北京 100190
EFFECTS OF ENVIRONMENTAL MEDIA ON HIGH CYCLE AND VERY-HIGH-CYCLE FATIGUE BEHAVIORS OF STRUCTURAL STEEL 40Cr
QIAN Gui'an;  HONG Youshi
State Key Laboratory of Nonlinear Mechanics; Institute of Mechanics; Chinese Academy of Sciences; Beijing 100190
引用本文:

钱桂安 洪友士. 环境介质对40Cr结构钢高周和超高周疲劳行为的影响[J]. 金属学报, 2009, 45(11): 1356-1363.
, . EFFECTS OF ENVIRONMENTAL MEDIA ON HIGH CYCLE AND VERY-HIGH-CYCLE FATIGUE BEHAVIORS OF STRUCTURAL STEEL 40Cr[J]. Acta Metall Sin, 2009, 45(11): 1356-1363.

全文: PDF(1380 KB)  
摘要: 

选用40Cr结构钢, 分别在空气、水和3.5%NaCl水溶液中进行旋转弯曲疲劳实验, 研究环境介质对该结构钢高周和超高周疲劳特性的影响. 结果表明, 40Cr钢在水环境中的疲劳强度比在空气中明显降低; 在3.5%NaCl水溶液环境中的疲劳强度比在水中低. 断面观察显示, 在水和3.5%NaCl水溶液中, 疲劳裂纹多源萌生; 在稳态扩展阶段, 裂纹沿晶界扩展并存在广泛分布的沿晶二次裂纹. 。

关键词 40Cr结构钢超高周疲劳环境介质疲劳强度疲劳裂纹萌生    
Abstract

Very-high-cycle fatigue of metallic materials is commonly regarded as fatigue failure occurs at stress levels below conventional fatigue limit and the relevant fatigue lives are above 107 cyc. Rotary bending fatigue tests for a structural steel 40Cr were performed in laboratory air, fresh water and 3.5\%NaCl aqueous solution, respectively, to investigate the influence of environmental media on fatigue behaviors of the steel in high cycle and very-igh-cycle fatigue regimes. The results show that the fatigue strength of the steel in water is remarkably degraded compared with that in air, and the fatigue strength in 3.5%NaCl solution is even lower than that in water. The fracture surface observations show that for the specimens tested in water and 3.5%NaCl solution, multiple crack originations exist and cracks propagate along grain boundary with widespread secondary cracks in their steady propagation period.

Key wordsstructural steel 40Cr    very-high-cycle fatigue    environmental media    fatigue strength    fatigue crack initiation
收稿日期: 2009-05-07     
ZTFLH: 

TG111.8

 
基金资助:

国家自然科学基金项目10772178, 10721202和10532070以及中国科学院知识创新工程重要方向项目KJCX2-YW-L07资助

作者简介: 钱桂安, 男, 1980年生, 博士生

[1] Stanzl S E, Tschegg E K, Mayer H. Int J Fatigue, 1986; 8: 195
[2] Kikukawa M, Ohji K, Ogura K. Trans ASME, 1965; 87D: 857
[3] Naito T, Ueda H, Kikuchi M. J Soc Materi Sci Jpn, 1983; 32: 1162
[4] Naito T, Ueda H, Kikuchi M. Metall Mater Trans, 1984; 15A: 1431
[5] Takeuchi E, Furuya Y, Nagashima N, Matsuoka S. Fatigue Fract Eng Mater Struct, 2008; 31: 599
[6] Ranc N, Wagner D, Paris P C. Acta Mater, 2008; 56: 4012
[7] Marines–Garcia I, Paris P C, Tada H, Bathias C, Lados D. Eng Fract Mech, 2008; 75: 1657

[8] Liu Y B, Yang Z G, Li Y D, Shen S M, Li S X, HuiWJ, Weng Y Q. Mater Sci Eng, 2008; A497: 408
[9] Gonzalo M, Dominguez A. Mech Mater, 2008; 40: 636
[10] Makino T. Int J Fatigue, 2008; 30: 1409
[11] Akiniwa Y, Stanzl–Tschegg S, Mayer H, Wakita M, Tanaka K. Int J Fatigue, 2008; 30: 2057
[12] Sohar C R, Betzwar–Kotas A, Gierl C,Weiss B, Danninger H. Int J Fatigue, 2008; 30: 1137
[13] Nakajima M, Tokaji K, Itoga H, Ko H N. Fatigue Fract Eng Mater Struct, 2003; 26: 1113
[14] Tokaji K, Ko H N, Nakajima M, Itoga H. Mater Sci Eng, 2003; A345: 197
[15] Furuya Y, Matsuoka S, Abe T, Yamaguchi K. Scr Mater, 2002; 46: 157
[16] Shiozawa K, Lu L. Fatigue Fract Eng Mater Struct, 2002; 25: 813
[17] Itoga H, Tokaji K, Nakajima M, Ko H N. Int J Fatigue, 2003; 25: 379
[18] Shiozawa K, Morii Y, Nishino S, Lu L. Int J Fatigue, 2006; 28: 1521
[19] Sakai T, Sato Y, Oguma N. Fatigue Fract Eng Mater Struct, 2002; 25: 765
[20] Zhou C E, Qian G A, Hong Y S. Key Eng Mater, 2006; 324–325: 1113
[21] Wang Q Y, Berard J Y, Rathery S, Bathias C. Fatigue Fract Eng Mater Struct, 1999; 22: 673
[22] McMahon Jr C J. Eng Fract Mech, 2001; 68: 773
[23] Taha A, Sofronis P. Eng Fract Mech, 2001; 68: 803
[24] Nagumo M, Shimura H, Chaya T, Hayashi H, Ochiai I. Mater Sci Eng, 2003; A348: 192
[25] Nagao A, Kuramoto S, Ichitani K, Kanno M. Scr Mater, 2001; 45: 1227
[26] Shipilov S A. Scr Mater, 2002; 47: 301

[27] Page R A, Gerberich W W. Met Trans, 1982; 13A: 305

[1] 张哲峰, 李克强, 蔡拓, 李鹏, 张振军, 刘睿, 杨金波, 张鹏. 层错能对面心立方金属形变机制与力学性能的影响[J]. 金属学报, 2023, 59(4): 467-477.
[2] 李细锋, 李天乐, 安大勇, 吴会平, 陈劼实, 陈军. 钛合金及其扩散焊疲劳特性研究进展[J]. 金属学报, 2022, 58(4): 473-485.
[3] 刘汉青, 何超, 黄志勇, 王清远. TC17合金超高周疲劳裂纹萌生机理[J]. 金属学报, 2017, 53(9): 1047-1054.
[4] 张慧, 杜艳霞, 李伟, 路民旭. 不同环境介质中X70钢的交流腐蚀行为及腐蚀产物膜层分析[J]. 金属学报, 2017, 53(8): 975-982.
[5] 刘小龙,孙成奇,周砚田,洪友士. 微结构和应力比对Ti-6Al-4V高周和超高周疲劳行为的影响*[J]. 金属学报, 2016, 52(8): 923-930.
[6] 朱莉娜,邓彩艳,王东坡,胡绳荪. 表面粗糙度对Ti-6Al-4V合金超高周疲劳性能的影响*[J]. 金属学报, 2016, 52(5): 583-591.
[7] 张永健 惠卫军 项金钟 董瀚 翁宇庆. 晶粒尺寸对42CrMoVNb钢超高周疲劳性能的影响[J]. 金属学报, 2009, 45(7): 880-886.
[8] 洪友士 赵爱国 钱桂安. 合金材料超高周疲劳行为的基本特征和影响因素[J]. 金属学报, 2009, 45(7): 769-780.
[9] 陈树铭 李永德 柳洋波 杨振国 李守新 张哲峰. 不同循环载荷下54SiCr6钢的疲劳强度[J]. 金属学报, 2009, 45(4): 428-433.
[10] 李永德; 杨振国; 李守新; 柳洋波; 陈树铭 . GCr15轴承钢超高周疲劳性能与夹杂物相关性[J]. 金属学报, 2008, 44(8): 968-972 .
[11] 李永德; 李守新; 杨振国; 柳洋波; 翁宇庆; 惠卫军; 戎利建 . 氢对高强弹簧钢50CrV4超高周疲劳性能的影响[J]. 金属学报, 2008, 44(1): 64-68 .
[12] 左景辉; 王中光; 韩恩厚 . Ti-6Al-4V合金的超高周疲劳行为[J]. 金属学报, 2007, 43(7): 705-709 .
[13] 姚卫星; 郭盛杰 . LC4CS铝合金的超高周疲劳寿命分布[J]. 金属学报, 2007, 43(4): 399-403 .
[14] 聂义宏; 惠卫军; 傅万堂; 翁宇庆; 董瀚 . 中碳高强度弹簧钢NHS1超高周疲劳破坏行为[J]. 金属学报, 2007, 43(10): 1031-1036 .
[15] 张继明; 杨振国; 李守新; 李广义; 惠卫军; 翁宇庆 . 汽车用高强度弹簧钢54SiCrV6和54SiCr6的超高周疲劳行为[J]. 金属学报, 2006, 42(3): 259-264 .