Please wait a minute...
金属学报  2008, Vol. 44 Issue (9): 1025-1030     
  论文 本期目录 | 过刊浏览 |
纳米尺度摩擦过程的分子动力学模拟
刘小明;由小川;柳占立;庄茁
清华大学航天航空学院
Modeling of nanoscale friction using molecular dynamics simulation
Xiao-Ming Liu;Xiaochuan You;;Zhuo Zhuang
清华大学工程力学系
引用本文:

刘小明; 由小川; 柳占立; 庄茁 . 纳米尺度摩擦过程的分子动力学模拟[J]. 金属学报, 2008, 44(9): 1025-1030 .
, , , . Modeling of nanoscale friction using molecular dynamics simulation[J]. Acta Metall Sin, 2008, 44(9): 1025-1030 .

全文: PDF(1695 KB)  
摘要: 利用分子动力学方法模拟了刚性金刚石压头在Ni单晶体上的滑动过程, 讨论了压入深度对 摩擦力的影响(压入深度对滑动过程中压头下方的微结构演化(能否发射位错环)有很大影响). 结 合摩擦过程中的塑性行为和能量耗散机制, 解释了产生摩擦力锯齿形曲线的原因, 证实了位错的形 核及湮灭是黏--滑机制的原因之一. 不同滑动速度对摩擦力影响的模拟表明, 压头的滑动速度决定 了压头下方位错环的运动和演化形式: 在高速滑动下, 形成的位错环依次沿着滑移面很快向Ni单晶 基体内扩展; 在低速滑动下, 压头下方产生的位错环互相发生作用, 在材料的亚表面形成较低能量的 大位错环, 由此产生的塑性变形主要集中在材料的亚表面.
关键词 纳米尺度摩擦分子动力学黏滑机制位错环    
Abstract:The nano scratch process of a rigid diamond tip into Ni substrate has been studied by using molecular dynamcs simulation with EAM potential. Simulations are carried out to investigate the scratch depth effect on the friction force in the scrath process. Furthermore, microstructures around the tip are strongly depended on the scratch depth and dislocation loops can be formed with enough penetration depth. Also, present study reveals that stick-slip phenomenon results from dislocation emission and phonon dissipation. The sawtooth phenomena can be explained from the point that elastic energy stored in the stick process transforms to the dislocations beneath the tip, and then dissipates in the form of phonons, and finally forms the surface defects. Finally, effect of the sliding velocity is studied, which can be deduced from the simulation. The scratch velocity is the critical factor on the dislocation loop nucleation and evolution process. At the higher velocity, dislocation loop glide along slip lane downward to the bulk material. While at the lower velocity, dislocation loops beneath the tip will reaction with each other, and finnaly a large loop will be formed under the subsurface of the material. Plastic deformation will focus on the subsurface of the bulk material under low scratch velocity.
Key wordsNanoscale    Friction    Molecular dymamics    Stick-slip mechanism    Dislocation loop
收稿日期: 2008-01-24     
ZTFLH:  TG146.1  
[1]Johnson K L.Contact Mechanics.New York:Cambridge University Press,1985:5
[2]Ernest R.Friction and Wear of Materials.New York: John Wiley and Sons Inc,1995:65
[3]Guo Y,Zhuang Z,Chen Z,Li X Y.Int J Solids Struct, 2007;44:1180
[4]Binquan L,Robbins M O.Nature,2005;435:929
[5]Hirano M,Shinjo K,Kaneko R,Murata Y.Phys Rev Lett, 1997;78:1448
[6]Martin D,Gertjan S,Namboodiri P,Joost W M,Jennifer A,Henny W.Phys Rev Lett,2004;92:126101
[7]Socoliuc A,Gnecco E,Maier S,Pfeiffer O,Baratoff A, Bennewitz R,Meyer E.Science,2006;313:207
[8]Cannara R J,Brukman M J,Cimatu K,Sumant A U, Baldelli S,Carpick R W.Science,2007;318:780
[9]Persson N J.Sliding Friction.Berlin:Springer,2000:165
[10]Sang Y,Dube M,Grant M.Phys Rev Lett,2001;87: 174301
[11]Ohno K,Nitta T,Nakamura J,Natori A.J Vac Sci Tech- nol,2004;22B:2026
[12]Fusco C,Fasolino A.Phys Rev,2005;71B:045413
[13]Nakamura J,Wakunami S,Naori A.Phys Rev,2005;72B: 235415
[14]Tomlinson G A.Philos Mag,1929;7:905
[15]Komanduri R,Chandrasekaran N,Raft L M.Wear,2000; 242:60
[16]Li J,Van Vliet K J,Zhu T,Yip S,Suresh S.Nature,2002; 418:307
[17]Li Q K,Zhang Y,Chu W Y.Acta Metall Sin,2004;40: 1238 (李启楷,张跃,褚武扬.金属学报,2004;40:1238)
[18]Mulliah D,Kenny S D,Smith R.Phys Rev,2004;69B: 205407
[19]Lee Y,Park J Y,Kim S Y,Jun S,Im S.Mech Mater, 2005;37:1035
[20]Smith R,Mulliah D,Kenn S D,McGee E,Richter A, Gruner M.Wear,2005;259:459
[21]Cho M H,Kim S J,Lim D S,Jang H.Wear,2005;259: 1392
[22]Cheng D,Yan Z J,Yan L.Thin Solid Films,2007;515: 3698
[23]Wang H L,Wang X X,Wang Y,Liang H Y.Acta Metall Sin,2007;43:259 (王海龙,王秀喜,王宇,梁海弋.金属学报,2007;43:259)
[24]Pei Q X,Lu C,Lee H P.Comput Mater Sci,2007;41:177
[25]Li B,Clapp P C,Rifkin J A,Zhang X M.J Appl Phys, 2001;90:3090
[26]Wang H,Hu Y Z,Zou K,Leng Y S.Sci China,2001;31A: 261 (王慧,胡元中,邹鲲,冷永胜.中国科学,2001;31A:261)
[27]Cheng D,Yan Z J,Yan L.Acta Metall Sin,2006;42:1149 (程东,严志军,严立.金属学报,2006;42:1149)
[28]Xu Z M,Huang P.Acta Phys Sin,2007;55:2427 (许中明,黄平.物理学报,2007;55:2427)
[29]Mishin Y,Farkas D,Mehl M J,Papaconstantopoulos D A.Phys Rev,1999;59B:393
[30]Fang T H,Weng C I.Nanotechnology,2000;11:148
[31]Berendsen H J,Postma J P M,van Gunsteren W V,Di Nola A,Haak J R.J Chem Phys,1984;81:3684
[32]Honeycutt J D,Andersen H C.J Phys Chem,1987;91: 4950
[33]Humphrey W,Dalke A,Schulten K.J Mol Graphics,1996; 14:33
[34]Nicola L,Bower A F,Kim K S,Needlemana A,Giessenb E V.J Mech Phys Solids,2007;5:1120
[35]Fivel M C,Robertson C F,Canova G R,Boulanger L. Acta Mater,1998;46:6183
[36]Knap J,Ortiz M.Phys Rev Lett,2003;90:226102
[37]Bulatov V V,Cai W.Computer Simulations of Disloca- tions,London:Oxford University Press,2006:18
[1] 冯力, 王贵平, 马凯, 杨伟杰, 安国升, 李文生. 冷喷涂辅助感应重熔合成AlCo x CrFeNiCu高熵合金涂层的显微组织和性能[J]. 金属学报, 2023, 59(5): 703-712.
[2] 苗军伟, 王明亮, 张爱军, 卢一平, 王同敏, 李廷举. AlCr1.3TiNi2 共晶高熵合金的高温摩擦学性能及磨损机理[J]. 金属学报, 2023, 59(2): 267-276.
[3] 李会朝, 王彩妹, 张华, 张建军, 何鹏, 邵明皓, 朱晓腾, 傅一钦. 搅拌摩擦增材制造技术研究进展[J]. 金属学报, 2023, 59(1): 106-124.
[4] 李海勇, 李赛毅. Al <111>对称倾斜晶界迁移行为温度相关性的分子动力学研究[J]. 金属学报, 2022, 58(2): 250-256.
[5] 王文权, 杜明, 张新戈, 耿铭章. H13钢表面电火花沉积WC-Ni基金属陶瓷涂层微观组织及摩擦磨损性能[J]. 金属学报, 2021, 57(8): 1048-1056.
[6] 陈果, 王新波, 张仁晓, 马成悦, 杨海峰, 周利, 赵运强. 搅拌头转速对2507双相不锈钢搅拌摩擦加工组织及性能的影响[J]. 金属学报, 2021, 57(6): 725-735.
[7] 毕甲紫, 刘晓斌, 李然, 张涛. 非晶合金粉末作为润滑油添加剂的摩擦学性能[J]. 金属学报, 2021, 57(4): 559-566.
[8] 李彦默, 郭小辉, 陈斌, 李培跃, 郭倩颖, 丁然, 余黎明, 苏宇, 李文亚. GH4169合金与S31042钢线性摩擦焊接头组织及力学性能[J]. 金属学报, 2021, 57(3): 363-374.
[9] 何长树, 郄默繁, 张志强, 赵骧. 轴向超声振动对搅拌摩擦焊过程中金属流动行为的影响[J]. 金属学报, 2021, 57(12): 1614-1626.
[10] 刘晨曦, 毛春亮, 崔雷, 周晓胜, 余黎明, 刘永长. 低活化铁素体/马氏体钢组织调控及其固相连接研究进展[J]. 金属学报, 2021, 57(11): 1521-1538.
[11] 赵万新, 周正, 黄杰, 杨延格, 杜开平, 贺定勇. FeCrNiMo激光熔覆层组织与摩擦磨损行为[J]. 金属学报, 2021, 57(10): 1291-1298.
[12] 刘明, 严富文, 高诚辉. 渐进法向力对金属材料微米划痕响应的影响[J]. 金属学报, 2021, 57(10): 1333-1342.
[13] 梁晋洁, 高宁, 李玉红. 体心立方Fe中微裂纹与间隙型位错环相互作用的分子动力学模拟[J]. 金属学报, 2020, 56(9): 1286-1294.
[14] 李美霖, 李赛毅. 金属Mg二阶锥面<c+a>刃位错运动特性的分子动力学模拟[J]. 金属学报, 2020, 56(5): 795-800.
[15] 李源才, 江五贵, 周宇. 纳米孔洞对单晶/多晶Ni复合体拉伸性能的影响[J]. 金属学报, 2020, 56(5): 776-784.