Please wait a minute...
金属学报  2007, Vol. 43 Issue (11): 1129-1137     
  论文 本期目录 | 过刊浏览 |
初生及次生α相对Ti-1023合金拉伸及断裂韧性的影响
王晓燕;刘建荣;雷家峰
中国科学院金属研究所
EFFECT OF PRIMARY AND SECONDARY ALPHA PHASE ON TENSILE PROPERTY AND FRACTURE TOUGHNESS OF Ti-1023 TITANIUM ALLOY
引用本文:

王晓燕; 刘建荣; 雷家峰 . 初生及次生α相对Ti-1023合金拉伸及断裂韧性的影响[J]. 金属学报, 2007, 43(11): 1129-1137 .

全文: PDF(1566 KB)  
摘要: Ti-1023合金是一种比较典型的近β钛合金,该合金具有高损伤容限及淬透性强的独特优点而备受关注。本文系统研究了初生及次生相对Ti-1023合金拉伸性能及断裂韧性的影响。结果发现初生α相主要通过控制亚稳β晶粒内溶质原子浓度来直接或间接影响Ti-1023合金的拉伸性能,而其形貌本身对Ti-1023合金拉伸性能尤其是强度影响不大。次生α相对Ti-1023合金拉伸性能有显著影响,影响程度取决于初生α相的数量、次生α相本身的形貌、数量和尺寸,初生α相体积分数增加,次生α相的强化作用减弱。初生α相含量和形状对Ti-1023合金断裂韧性影响有限,减少初生α相体积分数、增大次生α相数量和颗粒尺寸可获得更好的强度-断裂韧性匹配。
Abstract:Ti-1023 is a typical near-β titanium alloy, which has attracted extensive attention for such particular advantages as good damage tolerance and deeper hardenability as compared with its congeners. In present article, individual and collective effects of primary and secondary  phase on tensile property and fracture toughness were systematically investigated on Ti-1023 titanium alloy. It was found that the volume fraction of primary  phase (p) plays the main role in influencing the tensile properties by way of altering the concentration of solute atoms in metastable β phase, while the p morphology plays the minor role. Pronounced effect of secondary  phase (s) on tensile properties was observed, depending on the amount, morphology and size of s. And the strengthening effect secondary  phase is weakened with increasing of the volume fraction of p. Limited effect of p on fracture toughness of Ti-1023 alloy was found and better balance between fracture toughness and strength can be achieved by way of lowering volume fraction of p and increasing amount and size of s particles.
Key words
收稿日期: 2007-03-06     
ZTFLH:  TG113  
[1]Boyer R R,Eylon D,Lutjering G.Fatigue Behavior of Titanium Alloys.Warrendale,PA:TMS,1999:149
[2]Boyer R R.JOM,1980;32:61
[3]Terinde G T,Duering T W,Williams J C.Metall Trans, 1983;14A:2101
[4]Leyens C,Peters M.Titanium and Titanium Alloys, Cologne,Germany:WILEY-VCH Verlag GmbH & Co. KGaA,2003:42
[5]Terlinde G,Rathjen H J,Schwalbe K H.Metall Trans, 1988;19A:1037
[6]Eylon D,Boyer R R,Koss D A.Strengthening Capability of Beta Titanium Alloy of the 1990's.Warrendale,PA: TMS,1993:187
[7]Boyer R R,Eylon D,Lutjering G.Fatigue Behavior of Titanium Alloys.Warrendale,PA:TMS,1999:135
[8]Boyer R R,Kuhlman G W.Metall Trans,1987;18A:2095
[9]Applied Research Corpus of Ti-1023 Titanium Alloys Used in Aircraft(Unpublished).1994:164 (Ti-1023钛合金在航空器上的应用研究文集(中国科学院金属研究所内部资料).1994:164)
[10]Froes F H,Caplan I.Titanium'92 Science and Technol- ogy.Warrendale,PA:TMS,1993:77
[11]Benedetti M,Peters J O,Lutjering G.Titanium'03 Sci- ence and Technology,Proc 10th World Conf on Titanium, Hamburg,Germany:WlLEY-VCH Verlag GmbH & Co. KGaA,2003:1659
[12]Boyer R,Welsch G,Collings E W.Materials Properties Handbook:Titanium Alloys.Materials Park,OH:ASM International,1994:829
[13]Bhattacharjee A,Bhargava S,Varma V K,Kamat S V, Gogia A K.Scr Mater,2005;53:195
[14]Duerig T W,Albrecht J,Richter D,Fischer P.Acta Met- all,1982;30:2161
[15]Grosdidier T,Combres Y,Gautier E,Philippe M J.Metall Mater Trans,2000;31A:1095
[16]Peters J O,Lutjering G.Metall Mater Trans,2001;32A: 2805
[17]Toyama K,Maeda T.Trans Iron Steel Inst Jpn.1986;26: 814
[18]Hirth J P,Froes F H.Metall Trans,1977;8A:1165
[19]Blenkinsop P A,Evans W J,Flowers H M.Titanium'95 Science and Technology.London:Institute of Materials, 1996:948
[20]Lee C S,Kim S J,Park C G,Chang Y W.Key Eng Mater, 1991;51-52:197
[21]Blenkinsop P A,Evans W J,Flowers H M.Titanium'95 Science and Technology.London:Institute of Materials, 1996:988
[22]Blenkinsop P A,Evans W J,Flowers H M.Titanium'95 Science and Technology.London:Institute of Materials, 1996:933R
[1] 张子轩, 于金江, 刘金来. 镍基单晶高温合金DD432的持久性能各向异性[J]. 金属学报, 2023, 59(12): 1559-1567.
[2] 张利民, 李宁, 朱龙飞, 殷鹏飞, 王建元, 吴宏景. 交流电脉冲对过共晶Al-Si合金中初生Si相偏析的作用机制[J]. 金属学报, 2023, 59(12): 1624-1632.
[3] 周婷婷 赵福祺 周洪强 张凤国 殷建伟. 含He泡液态金属铝动态拉伸断裂机制与损伤模型研究[J]. 金属学报, 0, (): 0-0.
[4] 杜银 李涛 裴旭辉 周青 王海丰. TiZrHfCuBe高熵非晶合金的纳米划痕力学行为[J]. 金属学报, 0, (): 0-0.
[5] 李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.
[6] 杜金辉, 毕中南, 曲敬龙. 三联冶炼GH4169合金研究进展[J]. 金属学报, 2023, 59(9): 1159-1172.
[7] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[8] 刘光辉 王卫国 Gregory S Rohrer 陈松 林燕 童芳 冯小铮 周邦新. 高温压缩变形Al-Zn-Mg-Cu合金动态再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 0, (): 0-0.
[9] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[10] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.
[11] 王瀚铭 杜银 裴旭辉 王海丰. 共晶组织强化NbMoZrVSix难熔高熵合金的摩擦磨损性能及磨损机理研究[J]. 金属学报, 0, (): 0-0.
[12] 于云鹤 谢勇 陈鹏 董浩凯 侯纪新 夏志新. 316L不锈钢表面激光熔化沉积CoCrNiCu中熵合金的界面相容性研究[J]. 金属学报, 0, (): 0-0.
[13] 张金钰, 屈启蒙, 王亚强, 吴凯, 刘刚, 孙军. 金属/高熵合金纳米多层膜的力学性能及其辐照效应研究进展[J]. 金属学报, 2022, 58(11): 1371-1384.
[14] 赵永好, 毛庆忠. 纳米金属结构材料的韧化[J]. 金属学报, 2022, 58(11): 1385-1398.
[15] 李小琳, 刘林锡, 李雅婷, 杨佳伟, 邓想涛, 王海丰. 单一 MX 型析出相强化马氏体耐热钢力学性能及蠕变行为[J]. 金属学报, 2022, 58(9): 1199-1207.