|
|
交流电脉冲对过共晶Al-Si合金中初生Si相偏析的作用机制 |
张利民1( ), 李宁2, 朱龙飞1, 殷鹏飞3, 王建元1, 吴宏景1 |
1西北工业大学 物理科学与技术学院 超常条件材料物理与化学教育部重点实验室 西安 710072 2太原科技大学 材料科学与工程学院 太原 030024 3四川农业大学 理学院 雅安 625014 |
|
Macrosegregation Mechanism of Primary Silicon Phase in Cast Hypereutectic Al-Si Alloys Under Alternating Electropulsing |
ZHANG Limin1( ), LI Ning2, ZHU Longfei1, YIN Pengfei3, WANG Jianyuan1, WU Hongjing1 |
1MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China 2School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China 3College of Science, Sichuan Agricultural University, Ya'an 625014, China |
引用本文:
张利民, 李宁, 朱龙飞, 殷鹏飞, 王建元, 吴宏景. 交流电脉冲对过共晶Al-Si合金中初生Si相偏析的作用机制[J]. 金属学报, 2023, 59(12): 1624-1632.
Limin ZHANG,
Ning LI,
Longfei ZHU,
Pengfei YIN,
Jianyuan WANG,
Hongjing WU.
Macrosegregation Mechanism of Primary Silicon Phase in Cast Hypereutectic Al-Si Alloys Under Alternating Electropulsing[J]. Acta Metall Sin, 2023, 59(12): 1624-1632.
1 |
Wu Y, Wang S J, Li H, et al. A new technique to modify hypereutectic Al-24%Si alloys by a Si-P master alloy[J]. J. Alloys Compd., 2009, 477: 139
doi: 10.1016/j.jallcom.2008.10.015
|
2 |
Feng H K, Yu S R, Li Y L, et al. Effect of ultrasonic treatment on microstructures of hypereutectic Al-Si alloy[J]. J. Mater. Process. Technol., 2008, 208: 330
doi: 10.1016/j.jmatprotec.2007.12.121
|
3 |
Zhang Y H, Ye C Y, Xu Y Y, et al. Influence of growth velocity on the separation of primary silicon in solidified Al-Si hypereutectic alloy driven by a pulsed electric current[J]. Metals, 2017, 7: 184
doi: 10.3390/met7060184
|
4 |
Hernández F C R, Sokolowski J H. Comparison among chemical and electromagnetic stirring and vibration melt treatments for Al-Si hypereutectic alloys[J]. J. Alloys Compd., 2006, 426: 205
doi: 10.1016/j.jallcom.2006.09.039
|
5 |
Räbiger D, Zhang Y H, Galindo V, et al. The relevance of melt convection to grain refinement in Al-Si alloys solidified under the impact of electric currents[J]. Acta Mater., 2014, 79: 327
doi: 10.1016/j.actamat.2014.07.037
|
6 |
Li N, Zhang R, Zhang L M, et al. Study on grain refinement mechanism of hypoeutectic Al-7%Si alloy under low voltage alternating current pulse[J]. Acta Metall. Sin., 2017, 53: 192
|
6 |
李 宁, 张 蓉, 张利民 等. 低压交流电脉冲下Al-7%Si合金晶粒细化机理研究[J]. 金属学报, 2017, 53: 192
|
7 |
Zhang L M, Liu H N, Li N, et al. The relevance of forced melt flow to grain refinement in pure aluminum under a low-frequency alternating current pulse[J]. J. Mater. Res., 2016, 31: 396
doi: 10.1557/jmr.2016.17
|
8 |
Wang T M, Zhu J, Kang H J, et al. In situ synchrotron X-ray imaging on morphological evolution of dendrites in Sn-Bi hypoeutectic alloy under electric currents[J]. Appl. Phys., 2014, 117A: 1059
|
9 |
Zhang X F, Qin R S. Electric current-driven migration of electrically neutral particles in liquids[J]. Appl. Phys. Lett., 2014, 104: 114106
doi: 10.1063/1.4869465
|
10 |
Zhang Y H, Xu Y Y, Ye C Y, et al. Relevance of electrical current distribution to the forced flow and grain refinement in solidified Al-Si hypoeutectic alloy[J]. Sci. Rep., 2018, 8: 3242
doi: 10.1038/s41598-018-21709-y
pmid: 29459751
|
11 |
Chen Z X, Ding H S, Chen R R, et al. Microstructural evolution and mechanism of solidified TiAl alloy applied electric current pulse[J]. Acta Metall. Sin., 2019, 55: 611
doi: 10.11900/0412.1961.2018.00504
|
11 |
陈占兴, 丁宏升, 陈瑞润 等. 脉冲电流作用下TiAl合金凝固组织演变及形成机理[J]. 金属学报, 2019, 55: 611
doi: 10.11900/0412.1961.2018.00504
|
12 |
Zhang Y H, Song C J, Zhu L, et al. Influence of electric-current pulse treatment on the formation of regular eutectic morphology in an Al-Si eutectic alloy[J]. Metall. Mater. Trans., 2011, 42B: 604
|
13 |
Li F, Regel L L, Wilcox W R. The influence of electric current pulses on the microstructure of the MnBi/Bi eutectic[J]. J. Cryst. Growth, 2001, 223: 251
doi: 10.1016/S0022-0248(00)00991-X
|
14 |
Flemings M C, Mehrabian R, Nereo G E. Macrosegregation: Part II[J]. Trans. Met. Soc. AIME, 1968, 242: 41
|
15 |
Beckermann C. Modelling of macrosegregation: Applications and future needs[J]. Int. Mater. Rev., 2002, 47: 243
doi: 10.1179/095066002225006557
|
16 |
Jie J C, Zou Q C, Sun J L, et al. Separation mechanism of the primary Si phase from the hypereutectic Al-Si alloy using a rotating magnetic field during solidification[J]. Acta Mater., 2014, 72: 57
doi: 10.1016/j.actamat.2014.03.031
|
17 |
Zimmermann G, Weiss A, Mbaya Z. Effect of forced melt flow on microstructure evolution in AlSi7Mg0.6 alloy during directional solidification[J]. Mater. Sci. Eng., 2005, A413-414: 236
|
18 |
Noeppel A, Ciobanas A, Wang X D, et al. Influence of forced/natural convection on segregation during the directional solidification of Al-based binary alloys[J]. Metall. Mater. Trans., 2010, 41B: 193
|
19 |
Zhang Y H, Miao X C, Shen Z Y, et al. Macro segregation formation mechanism of the primary silicon phase in directionally solidified Al-Si hypereutectic alloys under the impact of electric currents[J]. Acta Mater., 2015, 97: 357
doi: 10.1016/j.actamat.2015.07.002
|
20 |
Li J Y, Ni P, Wang L, et al. Influence of direct electric current on solidification process of Al-Si alloy[J]. Mater. Sci. Semicond. Process., 2017, 61: 79
doi: 10.1016/j.mssp.2016.12.034
|
21 |
Ban C Y, Han Y, Ba Q X, et al. Influence of pulse electric current on solidification structures of Al-Si alloys[J]. Mater. Sci. Forum, 2007, 546-549: 723
doi: 10.4028/www.scientific.net/MSF.546-549
|
22 |
Zhang B W, Ren Z M, Zhong Y B, et al. Theoretical analysis on electromagnetic separation of inclusions from molten metal only by current[J]. J. Baotou Univ. Iron Steel Technol., 2002, 21: 228
|
22 |
张邦文, 任忠鸣, 钟云波 等. 金属液单电流电磁净化的理论分析[J]. 包头钢铁学院学报, 2002, 21: 228
|
23 |
Du C M. The effect of current on inclusion and bubble in molten steel[D]. Shenyang: Northeastern University, 2013
|
23 |
杜传明. 电流对钢液中气泡和夹杂物的影响[D]. 沈阳: 东北大学, 2013
|
24 |
Qin R S, Bhowmik A. Computational thermodynamics in electric current metallurgy[J]. Mater. Sci. Technol., 2015, 31: 1560
doi: 10.1179/1743284714Y.0000000746
|
25 |
Wang X L, Guo J D, Wang Y M, et al. Segregation of lead in Cu-Zn alloy under electric current pulses[J]. Appl. Phys. Lett., 2006, 89: 061910
|
26 |
Zhang X F, Lu W J, Qin R S. Removal of MnS inclusions in molten steel using electropulsing[J]. Scr. Mater., 2013, 69: 453
doi: 10.1016/j.scriptamat.2013.05.033
|
27 |
Zhang L M, Zhang R, Li N, et al. Evolution of solidification structure of hypereutectic Al-Si alloy under a novel low-voltage alternating current pulse[J]. J. Iron Steel Res. Int., 2012, 19(suppl.): 355
|
28 |
Zhang L M, Zhang R, Chen W J, et al. Effect of a novel low-voltage alternating current pulse on solidification structure of Al-7Si-0.52Mg alloy[J]. Adv. Mater. Res., 2012, 482-484: 1431
|
29 |
Murray J L, McAlister A J. Massalski T B. Binary Alloy Phase Diagrams, Vol. I[M]. 2nd Ed., ASM International, 1996: 211
|
30 |
Mao W M, Li S S, Zhao A M, et al. Effect of electromagnetic stirring on the distribution of primary silicon in hypereutectic Al-Si alloys[J]. Acta Metall. Sin., 2001, 37: 781
|
30 |
毛卫民, 李树索, 赵爱民 等. 电磁搅拌对过共晶Al-Si合金初生Si分布的影响[J]. 金属学报, 2001, 37: 781
|
31 |
Taniguchi S, Brimacombe J K. Application of pinch force to the separation of inclusion particles from liquid steel[J]. ISIJ Int., 1994, 34: 722
doi: 10.2355/isijinternational.34.722
|
32 |
Zhang X F, Yan L G. Regulating the non-metallic inclusions by pulsed electric current in molten metal[J]. Acta Metall. Sin., 2020, 56: 257
doi: 10.11900/0412.1961.2019.00391
|
32 |
张新房, 闫龙格. 脉冲电流调控金属熔体中的非金属夹杂物[J]. 金属学报, 2020, 56: 257
doi: 10.11900/0412.1961.2019.00391
|
33 |
Nikrityuk P A, Eckert K, Grundmann R, et al. An impact of a low voltage steady electrical current on the solidification of a binary metal alloy: A numerical study[J]. Steel Res. Int., 2007, 78: 402
doi: 10.1002/srin.2007.78.issue-5
|
34 |
Bojarevičs V, Shcherbinin E V. Azimuthal rotation in the axisymmetric meridional flow due to an electric-current source[J]. J. Fluid Mech., 1983, 126: 413
doi: 10.1017/S0022112083000245
|
35 |
Schmitz J, Hallstedt B, Brillo J, et al. Density and thermal expansion of liquid Al-Si alloys[J]. J. Mater. Sci., 2012, 47: 3706
doi: 10.1007/s10853-011-6219-8
|
36 |
Yu W Z, Ma W H, Zheng Z, et al. Effects of melt viscosity on enrichment and separation of primary silicon from Al-Si melt[J]. Trans. Nonferrous Met. Soc. China, 2017, 27: 467
doi: 10.1016/S1003-6326(17)60053-0
|
37 |
Yin M Z. Effect of centrifugal casting on microstructures and properties of hypereutectic Al-20wt.%Si alloy[D]. Changchun: Jilin University, 2014
|
37 |
尹茂振. 离心铸造对过共晶Al-20wt.%Si合金组织及性能的影响[D]. 长春: 吉林大学, 2014
|
38 |
Li X, Fautrelle Y, Ren Z M. Influence of thermoelectric effects on the solid-liquid interface shape and cellular morphology in the mushy zone during the directional solidification of Al-Cu alloys under a magnetic field[J]. Acta Mater., 2007, 55: 3803
doi: 10.1016/j.actamat.2007.02.031
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|