Please wait a minute...
金属学报  2023, Vol. 59 Issue (12): 1624-1632    DOI: 10.11900/0412.1961.2021.00480
  本期目录 | 过刊浏览 |
交流电脉冲对过共晶Al-Si合金中初生Si相偏析的作用机制
张利民1(), 李宁2, 朱龙飞1, 殷鹏飞3, 王建元1, 吴宏景1
1西北工业大学 物理科学与技术学院 超常条件材料物理与化学教育部重点实验室 西安 710072
2太原科技大学 材料科学与工程学院 太原 030024
3四川农业大学 理学院 雅安 625014
Macrosegregation Mechanism of Primary Silicon Phase in Cast Hypereutectic Al-Si Alloys Under Alternating Electropulsing
ZHANG Limin1(), LI Ning2, ZHU Longfei1, YIN Pengfei3, WANG Jianyuan1, WU Hongjing1
1MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
2School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
3College of Science, Sichuan Agricultural University, Ya'an 625014, China
引用本文:

张利民, 李宁, 朱龙飞, 殷鹏飞, 王建元, 吴宏景. 交流电脉冲对过共晶Al-Si合金中初生Si相偏析的作用机制[J]. 金属学报, 2023, 59(12): 1624-1632.
Limin ZHANG, Ning LI, Longfei ZHU, Pengfei YIN, Jianyuan WANG, Hongjing WU. Macrosegregation Mechanism of Primary Silicon Phase in Cast Hypereutectic Al-Si Alloys Under Alternating Electropulsing[J]. Acta Metall Sin, 2023, 59(12): 1624-1632.

全文: PDF(3324 KB)   HTML
摘要: 

通过在过共晶Al-Si合金的不同成分点及不同凝固阶段施加交流电脉冲等方法研究了电脉冲下初生Si相偏析的演变规律。结果表明,电脉冲可使高Si铝合金沿径向从边缘到中心依次形成4层梯度偏析组织:初生Si相的粗大板条状区、细化板条状区、多面体状区及近共晶组织区。相同电脉冲下合金凝固温度区间越大,初生Si偏析越显著,凝固区间超过阈值后试样中心形成近共晶组织。不同成分合金中初生相偏析都随脉冲电流密度增加先增强后减弱,但最严重偏析对应的电流密度不同。初生Si相晶核迁移是偏析的一个重要因素,结合侧壁传热受限铸型中初生Si的偏析规律,揭示了电脉冲导致初生Si相偏析的机理:初生Si相晶核在熔体内二次流作用下迁移到固/液界面前沿,在电磁斥力或其分量作用下被生长界面捕捉,从而偏析到散热、生长快的型壁及下电极附近。液相区、糊状区内对流和固/液界面前沿涡街等二次流协同作用改变了熔体内溶质分布,促进了初生Si相的连续生长和偏析,直到熔体中溶质含量接近共晶成分。

关键词 初生Si相电脉冲宏观偏析二次流熔体对流    
Abstract

Controlling the macrosegregation induced by electropulsing is of high commercial importance. This study investigates the macrosegregation of the primary Si phase in casting Al-Si hypereutectic alloys via the different solidification stages and components of alloys treated with electropulsing. Experimental results show that a serious gradient macrosegregation of the primary Si phase occurs, and four types of primary Si regions are formed: coarse plate-like, refined plate-like, and fine polygon primary Si, as well as a eutectic structure. The wider the solidification temperature range, the more serious the macrosegregation. A near-eutectic structure occurs at the center of ingots when the solidification temperature range exceeds a certain threshold. With an increasing current density of electropulsing, the segregation degree of primary Si increases initially and then decreases for different Al-Si hypereutectic alloys, but the current density with regard to the most serious segregation is closely related to the Si content. Furthermore, it is proved that the migration behavior of primary Si particles plays an important role in macrosegregation. A special casting experiment under the condition of limited heat flux along the radial direction was performed to clarify the macrosegregation mechanism of primary Si under electropulsing. After nucleation during the solidification process, the primary Si particles move to the front of the solid-liquid interface due to secondary flow in bulk liquid and then are easily captured due to the electromagnetic repulsive force or its component. The force flow in the bulk liquid and mush zone and the secondary flow in front of the solid-liquid interface make obvious solute redistribution and promote the growth of the primary Si phase, which is maintained until the solute concentration in the bulk liquid approaches the eutectic composition.

Key wordsprimary Si phase    electropulsing    macro segregation    secondary flow    forced melt flow
收稿日期: 2021-11-08     
ZTFLH:  TG113.12  
基金资助:国家自然科学基金项目(52074227);国家自然科学基金项目(51801186);国家自然科学基金项目(52130405);陕西省重点研发计划项目(2020ZDLGY13-03)
通讯作者: 张利民,liminzhang@nwpu.edu.cn,主要从事电磁场下合金凝固组织调控及电磁波吸收材料研究
作者简介: 张利民,男,1982年生,副教授,博士
Exp.Mass fraction of Si / %T / Kjeff / (A·cm-2)
1141023230
2161073230
3171073230
4181073230
5201073230
6301173230
72010730
8201073110
9201073165
10201073230
11201073300
123011730
13301173110
14301173165
15301173230
16301173300
17301173360
表1  电脉冲作用下过共晶Al-Si合金凝固实验参数
图1  有无电脉冲时Al-30%Si合金铸造凝固组织的OM像
图2  230 A/cm2电脉冲下过共晶Al-Si合金试样中轴心与边缘位置处初生相数目比值及电脉冲持续时间随凝固温度区间的变化
图3  不同成分过共晶Al-Si合金中初生Si偏析区厚度随脉冲电流密度变化曲线
图4  230 A/cm2电脉冲作用于Al-30%Si合金不同凝固阶段时凝固组织的OM像
图5  过共晶Al-30%Si合金组织中初生Si相富集区面积分数与电脉冲作用温度区间关系
图6  有无电脉冲时侧壁传热受限条件下Al-30%Si合金凝固组织的OM像
图7  液相内脉冲电流分布、对流状态、二次流及晶核迁移示意图
图8  电脉冲下初生Si梯度偏析形成的物理模型
1 Wu Y, Wang S J, Li H, et al. A new technique to modify hypereutectic Al-24%Si alloys by a Si-P master alloy[J]. J. Alloys Compd., 2009, 477: 139
doi: 10.1016/j.jallcom.2008.10.015
2 Feng H K, Yu S R, Li Y L, et al. Effect of ultrasonic treatment on microstructures of hypereutectic Al-Si alloy[J]. J. Mater. Process. Technol., 2008, 208: 330
doi: 10.1016/j.jmatprotec.2007.12.121
3 Zhang Y H, Ye C Y, Xu Y Y, et al. Influence of growth velocity on the separation of primary silicon in solidified Al-Si hypereutectic alloy driven by a pulsed electric current[J]. Metals, 2017, 7: 184
doi: 10.3390/met7060184
4 Hernández F C R, Sokolowski J H. Comparison among chemical and electromagnetic stirring and vibration melt treatments for Al-Si hypereutectic alloys[J]. J. Alloys Compd., 2006, 426: 205
doi: 10.1016/j.jallcom.2006.09.039
5 Räbiger D, Zhang Y H, Galindo V, et al. The relevance of melt convection to grain refinement in Al-Si alloys solidified under the impact of electric currents[J]. Acta Mater., 2014, 79: 327
doi: 10.1016/j.actamat.2014.07.037
6 Li N, Zhang R, Zhang L M, et al. Study on grain refinement mechanism of hypoeutectic Al-7%Si alloy under low voltage alternating current pulse[J]. Acta Metall. Sin., 2017, 53: 192
6 李 宁, 张 蓉, 张利民 等. 低压交流电脉冲下Al-7%Si合金晶粒细化机理研究[J]. 金属学报, 2017, 53: 192
7 Zhang L M, Liu H N, Li N, et al. The relevance of forced melt flow to grain refinement in pure aluminum under a low-frequency alternating current pulse[J]. J. Mater. Res., 2016, 31: 396
doi: 10.1557/jmr.2016.17
8 Wang T M, Zhu J, Kang H J, et al. In situ synchrotron X-ray imaging on morphological evolution of dendrites in Sn-Bi hypoeutectic alloy under electric currents[J]. Appl. Phys., 2014, 117A: 1059
9 Zhang X F, Qin R S. Electric current-driven migration of electrically neutral particles in liquids[J]. Appl. Phys. Lett., 2014, 104: 114106
doi: 10.1063/1.4869465
10 Zhang Y H, Xu Y Y, Ye C Y, et al. Relevance of electrical current distribution to the forced flow and grain refinement in solidified Al-Si hypoeutectic alloy[J]. Sci. Rep., 2018, 8: 3242
doi: 10.1038/s41598-018-21709-y pmid: 29459751
11 Chen Z X, Ding H S, Chen R R, et al. Microstructural evolution and mechanism of solidified TiAl alloy applied electric current pulse[J]. Acta Metall. Sin., 2019, 55: 611
doi: 10.11900/0412.1961.2018.00504
11 陈占兴, 丁宏升, 陈瑞润 等. 脉冲电流作用下TiAl合金凝固组织演变及形成机理[J]. 金属学报, 2019, 55: 611
doi: 10.11900/0412.1961.2018.00504
12 Zhang Y H, Song C J, Zhu L, et al. Influence of electric-current pulse treatment on the formation of regular eutectic morphology in an Al-Si eutectic alloy[J]. Metall. Mater. Trans., 2011, 42B: 604
13 Li F, Regel L L, Wilcox W R. The influence of electric current pulses on the microstructure of the MnBi/Bi eutectic[J]. J. Cryst. Growth, 2001, 223: 251
doi: 10.1016/S0022-0248(00)00991-X
14 Flemings M C, Mehrabian R, Nereo G E. Macrosegregation: Part II[J]. Trans. Met. Soc. AIME, 1968, 242: 41
15 Beckermann C. Modelling of macrosegregation: Applications and future needs[J]. Int. Mater. Rev., 2002, 47: 243
doi: 10.1179/095066002225006557
16 Jie J C, Zou Q C, Sun J L, et al. Separation mechanism of the primary Si phase from the hypereutectic Al-Si alloy using a rotating magnetic field during solidification[J]. Acta Mater., 2014, 72: 57
doi: 10.1016/j.actamat.2014.03.031
17 Zimmermann G, Weiss A, Mbaya Z. Effect of forced melt flow on microstructure evolution in AlSi7Mg0.6 alloy during directional solidification[J]. Mater. Sci. Eng., 2005, A413-414: 236
18 Noeppel A, Ciobanas A, Wang X D, et al. Influence of forced/natural convection on segregation during the directional solidification of Al-based binary alloys[J]. Metall. Mater. Trans., 2010, 41B: 193
19 Zhang Y H, Miao X C, Shen Z Y, et al. Macro segregation formation mechanism of the primary silicon phase in directionally solidified Al-Si hypereutectic alloys under the impact of electric currents[J]. Acta Mater., 2015, 97: 357
doi: 10.1016/j.actamat.2015.07.002
20 Li J Y, Ni P, Wang L, et al. Influence of direct electric current on solidification process of Al-Si alloy[J]. Mater. Sci. Semicond. Process., 2017, 61: 79
doi: 10.1016/j.mssp.2016.12.034
21 Ban C Y, Han Y, Ba Q X, et al. Influence of pulse electric current on solidification structures of Al-Si alloys[J]. Mater. Sci. Forum, 2007, 546-549: 723
doi: 10.4028/www.scientific.net/MSF.546-549
22 Zhang B W, Ren Z M, Zhong Y B, et al. Theoretical analysis on electromagnetic separation of inclusions from molten metal only by current[J]. J. Baotou Univ. Iron Steel Technol., 2002, 21: 228
22 张邦文, 任忠鸣, 钟云波 等. 金属液单电流电磁净化的理论分析[J]. 包头钢铁学院学报, 2002, 21: 228
23 Du C M. The effect of current on inclusion and bubble in molten steel[D]. Shenyang: Northeastern University, 2013
23 杜传明. 电流对钢液中气泡和夹杂物的影响[D]. 沈阳: 东北大学, 2013
24 Qin R S, Bhowmik A. Computational thermodynamics in electric current metallurgy[J]. Mater. Sci. Technol., 2015, 31: 1560
doi: 10.1179/1743284714Y.0000000746
25 Wang X L, Guo J D, Wang Y M, et al. Segregation of lead in Cu-Zn alloy under electric current pulses[J]. Appl. Phys. Lett., 2006, 89: 061910
26 Zhang X F, Lu W J, Qin R S. Removal of MnS inclusions in molten steel using electropulsing[J]. Scr. Mater., 2013, 69: 453
doi: 10.1016/j.scriptamat.2013.05.033
27 Zhang L M, Zhang R, Li N, et al. Evolution of solidification structure of hypereutectic Al-Si alloy under a novel low-voltage alternating current pulse[J]. J. Iron Steel Res. Int., 2012, 19(suppl.): 355
28 Zhang L M, Zhang R, Chen W J, et al. Effect of a novel low-voltage alternating current pulse on solidification structure of Al-7Si-0.52Mg alloy[J]. Adv. Mater. Res., 2012, 482-484: 1431
29 Murray J L, McAlister A J. Massalski T B. Binary Alloy Phase Diagrams, Vol. I[M]. 2nd Ed., ASM International, 1996: 211
30 Mao W M, Li S S, Zhao A M, et al. Effect of electromagnetic stirring on the distribution of primary silicon in hypereutectic Al-Si alloys[J]. Acta Metall. Sin., 2001, 37: 781
30 毛卫民, 李树索, 赵爱民 等. 电磁搅拌对过共晶Al-Si合金初生Si分布的影响[J]. 金属学报, 2001, 37: 781
31 Taniguchi S, Brimacombe J K. Application of pinch force to the separation of inclusion particles from liquid steel[J]. ISIJ Int., 1994, 34: 722
doi: 10.2355/isijinternational.34.722
32 Zhang X F, Yan L G. Regulating the non-metallic inclusions by pulsed electric current in molten metal[J]. Acta Metall. Sin., 2020, 56: 257
doi: 10.11900/0412.1961.2019.00391
32 张新房, 闫龙格. 脉冲电流调控金属熔体中的非金属夹杂物[J]. 金属学报, 2020, 56: 257
doi: 10.11900/0412.1961.2019.00391
33 Nikrityuk P A, Eckert K, Grundmann R, et al. An impact of a low voltage steady electrical current on the solidification of a binary metal alloy: A numerical study[J]. Steel Res. Int., 2007, 78: 402
doi: 10.1002/srin.2007.78.issue-5
34 Bojarevičs V, Shcherbinin E V. Azimuthal rotation in the axisymmetric meridional flow due to an electric-current source[J]. J. Fluid Mech., 1983, 126: 413
doi: 10.1017/S0022112083000245
35 Schmitz J, Hallstedt B, Brillo J, et al. Density and thermal expansion of liquid Al-Si alloys[J]. J. Mater. Sci., 2012, 47: 3706
doi: 10.1007/s10853-011-6219-8
36 Yu W Z, Ma W H, Zheng Z, et al. Effects of melt viscosity on enrichment and separation of primary silicon from Al-Si melt[J]. Trans. Nonferrous Met. Soc. China, 2017, 27: 467
doi: 10.1016/S1003-6326(17)60053-0
37 Yin M Z. Effect of centrifugal casting on microstructures and properties of hypereutectic Al-20wt.%Si alloy[D]. Changchun: Jilin University, 2014
37 尹茂振. 离心铸造对过共晶Al-20wt.%Si合金组织及性能的影响[D]. 长春: 吉林大学, 2014
38 Li X, Fautrelle Y, Ren Z M. Influence of thermoelectric effects on the solid-liquid interface shape and cellular morphology in the mushy zone during the directional solidification of Al-Cu alloys under a magnetic field[J]. Acta Mater., 2007, 55: 3803
doi: 10.1016/j.actamat.2007.02.031
[1] 冯苗苗, 张红伟, 邵景霞, 李铁, 雷洪, 王强. 耦合热力学相变路径预测Fe-C包晶合金宏观偏析[J]. 金属学报, 2021, 57(8): 1057-1072.
[2] 吴春雷,李德伟,朱晓伟,王强. 电磁旋流水口连铸技术对小方坯凝固组织形貌和宏观偏析的影响[J]. 金属学报, 2019, 55(7): 875-884.
[3] 潘栋, 赵宇光, 徐晓峰, 王艺橦, 江文强, 鞠虹. 高能瞬时电脉冲处理对42CrMo钢组织与性能的影响[J]. 金属学报, 2018, 54(9): 1245-1252.
[4] 李军, 夏明许, 胡侨丹, 李建国. 大型铸锭均质化问题及其新解[J]. 金属学报, 2018, 54(5): 773-788.
[5] 沈厚发, 陈康欣, 柳百成. 钢锭铸造过程宏观偏析数值模拟[J]. 金属学报, 2018, 54(2): 151-160.
[6] 李军, 王军格, 任凤丽, 葛鸿浩, 胡侨丹, 夏明许, 李建国. 基于成分均匀化的层状铸造方法的实验与模拟研究[J]. 金属学报, 2018, 54(1): 118-128.
[7] 李宁,张蓉,张利民,邢辉,殷鹏飞,吴耀燕. 低压交流电脉冲下Al-7%Si合金晶粒细化机理研究[J]. 金属学报, 2017, 53(2): 192-200.
[8] 李军,葛鸿浩,GE Honghao,WU Menghuai,李建国. 基于热溶质对流及晶粒运动的柱状晶-非球状等轴晶混合三相模型*[J]. 金属学报, 2016, 52(9): 1096-1104.
[9] 赵海东; 吴朝忠; 李元元; 大中逸雄 . 垂直向上凝固Al-Cu铸件中微观孔洞形成的数值模拟[J]. 金属学报, 2008, 44(11): 1340-1347 .
[10] 王同敏; 李廷举; 曹志强; 金俊泽; T.Grimmig; A.Buhrig-Polaczek; M.Wu; A.Ludwig . 等轴球晶凝固多相体系内热溶质对流、补缩流及晶粒运动的数值建模 II.模型的应用[J]. 金属学报, 2006, 42(6): 591-598 .
[11] 李中原; 赵九洲 . 平行板型薄板坯连铸结晶器中钢液流动、凝固及溶质分布的三维耦合数值模拟[J]. 金属学报, 2006, 42(2): 211-217 .
[12] 郭大勇; 杨院生; 童文辉; 胡壮麒 . 电磁离心凝固过程中宏观偏析的数值模拟[J]. 金属学报, 2004, 40(3): 275-280 .
[13] 郭大勇; 杨院生; 童文辉; 胡壮麒 . 电磁离心凝固过程中宏观偏析的数值模拟[J]. 金属学报, 2004, 40(3): 275-280 .
[14] 张勤; 崔建忠 . 7075铝合金CREM法半连铸坯中溶质元素的的宏观分布[J]. 金属学报, 2003, 39(12): 1264-1268 .
[15] 张伟; 隋曼龄; 周亦胄; 何冠虎; 郭敬东; 李斗星 . 高密度电脉冲下材料微观结构的演变[J]. 金属学报, 2003, 39(10): 1009-1018 .