Please wait a minute...
金属学报  2007, Vol. 43 Issue (11): 1138-1144     
  论文 本期目录 | 过刊浏览 |
深过冷Cu--20%Pb亚偏晶合金凝固组织的细化机制
刘丽琴 张忠明 徐春杰 郭学锋
西安理工大学材料科学与工程学院
Refinement Mechanism of the Solidification Structure of Cu--20%Pb Hypomonotectic Alloy by Deeply Undercooled Treatment
LIU Liqin; ZHANG Zhongming; XU Chunjie; GUO Xuefeng
School of Materials Science and Engineering; Xi'an University of Technology
引用本文:

刘丽琴; 张忠明; 徐春杰; 郭学锋 . 深过冷Cu--20%Pb亚偏晶合金凝固组织的细化机制[J]. 金属学报, 2007, 43(11): 1138-1144 .
, , , . Refinement Mechanism of the Solidification Structure of Cu--20%Pb Hypomonotectic Alloy by Deeply Undercooled Treatment[J]. Acta Metall Sin, 2007, 43(11): 1138-1144 .

全文: PDF(888 KB)  
摘要: 采用熔融玻璃净化与循环过热相结合的方法研究Cu-20%Pb亚偏晶合金的凝固组织,用BCT-LKT枝晶生长模型对深过冷凝固过程的热力学参数进行了计算,分析了过冷Cu-20%Pb亚偏晶合金的凝固机制。结果表明,在低过冷度下,Cu-20%Pb亚偏晶合金凝固组织由粗大的Cu枝晶和分布于枝晶间的Pb相组成。随着过冷度的增大,枝晶细化,Pb相分布均匀。但在不同的过冷度范围,凝固组织细化机制不同。当过冷度小于200K时,快速凝固阶段结晶潜热集中释放造成的温度回升引起枝晶大量重熔是枝晶细化的主要因素。过冷度大于200K时,枝晶高速生长导致枝晶各部位的不均匀收缩及枝晶骨架间液相的高速流动会使枝晶受力产生碎断。在此阶段,枝晶重熔和枝晶碎断共同作用使得枝晶发生细化。
Abstract:The solidification microstructure of Cu-20%Pb hypomonotectic alloy was investigated by means of combination of melted glass denucleation and cyclical superheating. The variation of thermomechanical parameters related to solidification of undercooled Cu-20%Pb hypomonotectic alloy was calculated based on the BCT-LKT dendritic growth model, thus the solidification mechanism of the alloy was discussed. The experimental results shows that the microstructure of Cu-20%Pb hypomonotectic alloy combines α(Cu) dendrites with Pb phases distributed between them at little undercooling solidification. Dendrites get refined and uniformed as undercooling increases. It can be concluded that the reason of dendrite refinement at different undercooling is not same. The melt can be heated above the solidus temperature due to release of latent heat during rapid solidification of the undercooled melt, thus part of solidified dendrites can be melted and refined when the undercooling is smaller than 200K. When undercooling is high, the contraction of different parts of dentrites and flow velocity of the melt are so high that the dendrites are impacted and become fragmented. Thus when undercooling is above 200K, dentrites will be refined by dendrite remelting and dendrite fragmentation together.
Key words
收稿日期: 2007-03-06     
ZTFLH:  TG172  
[1]Yang G C,Xie H,Hao W X.Trans Nonferrous Met Soc Chin,2006;16:290
[2]Hao W X,Yang G C,Xie H.Foundry Technol,2004;25: 105 (郝维新,杨根仓,谢辉.铸造技术,2004;25:105)
[3]Sun W L,Zhang Z M,Xu C J,Guo X F.Trans Mater Heat Treat,2005;26(6):53 (孙万里,张忠明,徐春杰,郭学锋.材料热处理学报,2005;26(6):53)
[4]Zhang Z M,Sun W L,Xu C J,Guo X F.J Xi'an Univ Technol,2005;21:118 (张忠明,孙万里,徐春杰,郭学锋.西安理工大学学报,2005;21:118)
[5]Sun W L,Zhang Z M,Xu C J,Guo X F.Ordnance Mater Sci Eng,2005;28(1):66 (孙万里,张忠明,徐春杰,郭学锋.兵器材料科学与工程,2005;28(1):66)
[6]Zheng H X,Li J G,Guo X F.Mater Design,2007;28: 558
[7]Boettinger W J,Coriell S R,Trivedi R.Rapid Solidifi- cation Processing:Principle and Technologes IV.In: Mehrabian R,Parrish P A,eds.,Baton Rouge:Claitor's Publishing Division,1988:13
[8]Trivedi R,Lipton J,Kurz W.Acta Metall,1987;35:965
[9]Kurz W,Trivedi R.Acta Metall Mater,1990;38:1
[10]Aziz M J.J Appl Phys,1982;53:1158
[11]Guo X F,Liu F,Yang G C,Xing J D.Acta Metall Sin, 2000;36:352 (郭学锋,刘峰,杨根仓,邢建东.金属学报,2000;36:352)
[12]Fan J F,Yang G C,Liu X B,Wang J C,Song G S.J Nonferrous Met Chin,2003;13:344 (樊建锋,杨根仓,刘新宝,王锦程,宋广生.中国有色金属学报,2003;13:344)
[13]Guo X F,Liu F,Yang G C,Xing J D.Prog Nat Sci,2000; 10:734 (郭学锋,刘峰,杨根仓,邢建东.自然科学进展,2000;10:734)
[14]Eric A B.Smithells Metals Reference Book.6ed.London: Robert Hartholl Ltd,1983:8
[15]Eckler K,Cochrane R F,D M Herlach,Jurisch M.Phys Rev,1992;45B:5019
[16]Eckler K,Herlach D M,Aziz M J.Acta Metall Mater, 1994;42:975
[1] 徐文国, 郝文江, 李应举, 赵庆彬, 卢炳聿, 郭和一, 刘天宇, 冯小辉, 杨院生. 微量AlTiInconel 690合金高温氧化行为的影响[J]. 金属学报, 2023, 59(12): 1547-1558.
[2] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[3] 李小涵, 曹公望, 郭明晓, 彭云超, 马凯军, 王振尧. 低碳钢Q235、管线钢L415和压力容器钢16MnNi在湛江高湿高辐照海洋工业大气环境下的初期腐蚀行为[J]. 金属学报, 2023, 59(7): 884-892.
[4] 李谦, 刘凯, 赵天亮. 弹性拉应力下Q235碳钢在5%NaCl盐雾中的成锈行为及其机理[J]. 金属学报, 2023, 59(6): 829-840.
[5] 黄鼎, 乔岩欣, 杨兰兰, 王金龙, 陈明辉, 朱圣龙, 王福会. 基体表面喷丸处理对纳米晶涂层循环氧化行为的影响[J]. 金属学报, 2023, 59(5): 668-678.
[6] 高瞻 张泽荣 程军胜 王秋良. Nb3Sn超导线材中Ta层的去除及腐蚀机理[J]. 金属学报, 0, (): 0-0.
[7] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[8] 刘雨薇, 顾天真, 王振尧, 汪川, 曹公望. Q235Q450NQR1在中国南沙海洋大气环境中暴晒34个月后的腐蚀行为[J]. 金属学报, 2022, 58(12): 1623-1632.
[9] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.
[10] 汤雁冰, 沈新旺, 刘志红, 乔岩欣, 杨兰兰, 卢道华, 邹家生, 许静. 激光选区熔化Inconel 718合金在NaOH溶液中的腐蚀行为[J]. 金属学报, 2022, 58(3): 324-333.
[11] 吕晨曦, 孙阳庭, 陈斌, 蒋益明, 李劲. 恒电位脉冲技术对317L不锈钢点蚀行为及耐点蚀性能的影响[J]. 金属学报, 2021, 57(12): 1607-1613.
[12] 邱龙时, 赵婧, 潘晓龙, 田丰. 高速钢表面TiN薄膜的界面疲劳剥落行为[J]. 金属学报, 2021, 57(8): 1039-1047.
[13] 郦晓慧, 王俭秋, 韩恩厚, 郭延军, 郑会, 杨双亮. 690合金在模拟核电高温高压水中的电化学及原位划伤行为研究[J]. 金属学报, 2020, 56(11): 1474-1484.
[14] 包飞洋, 李艳芬, 王光全, 张家榕, 严伟, 石全强, 单以银, 杨柯, 许斌, 宋丹戎, 严明宇, 魏学栋. ODS钢在600700 ℃静态Pb-Bi共晶中的腐蚀行为及机理[J]. 金属学报, 2020, 56(10): 1366-1376.
[15] 宋学鑫, 黄松鹏, 汪川, 王振尧. 碳钢在红沿河海洋工业大气环境中的初期腐蚀行为[J]. 金属学报, 2020, 56(10): 1355-1365.