Please wait a minute...
金属学报  2006, Vol. 42 Issue (5): 469-473     
  论文 本期目录 | 过刊浏览 |
Fe-Ni基合金氢脆的正电子湮没寿命谱研究
张建 李秀艳 戎利建 郑永男 朱升云
中科院金属研究所
STUDY OF HYDROGEN EMBRITLLEMENT IN Fe-Ni BASED ALLOY THROUGH POSITRON ANNIHILATION LIFETIME TEST
Jian Zhang;
中科院金属研究所特殊环境材料研究室
引用本文:

张建; 李秀艳; 戎利建; 郑永男; 朱升云 . Fe-Ni基合金氢脆的正电子湮没寿命谱研究[J]. 金属学报, 2006, 42(5): 469-473 .
, , , , . STUDY OF HYDROGEN EMBRITLLEMENT IN Fe-Ni BASED ALLOY THROUGH POSITRON ANNIHILATION LIFETIME TEST[J]. Acta Metall Sin, 2006, 42(5): 469-473 .

全文: PDF(2212 KB)  
摘要: 采用正电子湮没寿命谱研究了氢在不同热处理状态的Fe-Ni基沉淀强化奥氏体合金中的占位规律和作用机制, 结合拉伸实验、扫描电镜和透射电镜观察研究了热处理和热充氢对合金微观组织及力学性能的影响. 结果表明:热充氢导致固溶态合金内部的空位团浓度升高,合金强度上升, 塑性略有下降;氢在峰值时效合金中不进入γ'/γ界面,而是主要进入含少量碳化物的晶界和晶内空位团, 使合金塑性显著降低;过时效处理产生粗大γ'相, 使γ'/γ界面成为氢陷阱, 同时氢还进入存在连续碳化物的晶界, 造成合金塑性的严重降低.
关键词 正电子湮没沉淀强化奥氏体不锈钢氢脆    
Abstract:Positron annihilation lifetime and SEM were used to study the change of internal defects before and after hydrogen charging in a Fe-Ni based precipitation strengthened austenitic stainless steel which was heat-treated under different conditions. Positron annihilation lifetime spectrum was fitted in terms of two lifetime components. Both positron annihilation lifetime and tensile tests at room temperature indicate that solution treated alloy has a very little grain-boundary carbide and hydrogen charging will increase its strength while decrease its plasticity. Peak aging will produce more grain-boundary carbide and the  phase is in the size below 20nm,but is coherent with the matrix. After hydrogen charging, hydrogen will not enter the - interface,but the grain boundary and inter-grain vacancy clusters resulting in a obvious drop of plasticity, over-aging will induce much more interconnected grain-boundary carbide and  will coarse in a size of more than 70nm. As a result, hydrogen will enter the grain boundary and - interface with dislocation, which leads to the dramatic drop of plasticity.
Key wordspositron annihilation    precipitation-strengthened alloy    hydrogen embrittlement
收稿日期: 2005-08-12     
ZTFLH:  TG142.2  
[1] Abdel-Hady E E. Nuclear Instrum Method Phys Res, 2004; 221B: 225
[2] Magee C W, Botnick E M. J Vac Sci Technol, 1981; 19: 17
[3] Ma L M, Li Y Y, Liu S W, Chen L. Acta Metall Sin, 1988; 24: B427 (马禄铭,李依依,刘树望,陈廉.金属学报,1988;24:B427)
[4] Robertson W M. Metall Trans, 1977; 8A: 1709
[5] Wang A C, Li Y Y, Deng W, Fan C G, Yang K, Shi C X. Chin J Mater Res, 1995; 9: 1 (王安川,李依依,邓文,范存淦,杨柯,师昌绪,材料研 究学报,1995;9:1)
[6] Yu W Z. Positron Physics and Its Application. Beijing: Science Press, 2003: 51 (郁伟中.正电子物理及其应用.北京:科学出版社,2003:51)
[7] Liu L, Tanaka K, Hirose A, Kobayashi K F. Sci Technol Adv Mater, 2002; 3: 335
[8] Rhodes C G, Thompson A W. Metall Trans, 1977; 8A: 949
[9] Thompson A W, Brooks J A. Metall Trans, 1975; 6A: 1431
[10] Thompson A W. Metall Trans, 1976; 71A: 315
[11] Li X Y, Li Y Y. Hydrogen Damaged of Austenitic Alloy. Beijing: Science Press, 2003:1 (李秀艳,李依依.奥氏体合金的氢损伤.北京:科学出版社, 2003:1)
[12] Baskes M I. Mater Chem Phys, 1997; 50: 152
[13] Cialone H, Asaro R J. Metall Trans, 1979; 10A: 367
[14] Hautojarvi P, translated by He Y J, Yu W Z. Positron Annihilation Technology. Beijing: Science Press, 1983: 198 (Hautojarvi P 著,何元金,郁伟中译.正电子湮没技术.北 京:科学出版社,1983:198)
[15] Teng M K. Positron Annihilation and Its Application. Beijing: Atomic Energy Press, 2000: 100 (滕敏康.正电子湮没谱学及其应用.北京:原子能出版社,2000: 100)
[16] Troiano A R. Trans ASM, 1955; 47: 892
[1] 肖娜, 惠卫军, 张永健, 赵晓丽. 真空渗碳处理齿轮钢的氢脆敏感性[J]. 金属学报, 2021, 57(8): 977-988.
[2] 兰亮云, 孔祥伟, 邱春林, 杜林秀. 基于多尺度力学实验的氢脆现象的最新研究进展[J]. 金属学报, 2021, 57(7): 845-859.
[3] 安旭东, 朱特, 王茜茜, 宋亚敏, 刘进洋, 张鹏, 张钊宽, 万明攀, 曹兴忠. 奥氏体316不锈钢中位错与氢的相互作用机理[J]. 金属学报, 2021, 57(7): 913-920.
[4] 田雪芬, 刘翔, 龚敏, 张培源, 王康, 邓爱红. 用慢正电子束研究H/He中性束辐照W-ZrC合金中的缺陷演化[J]. 金属学报, 2021, 57(1): 121-128.
[5] 刘振宝,梁剑雄,苏杰,王晓辉,孙永庆,王长军,杨志勇. 高强度不锈钢的研究及发展现状[J]. 金属学报, 2020, 56(4): 549-557.
[6] 李金许,王伟,周耀,刘神光,付豪,王正,阚博. 汽车用先进高强钢的氢脆研究进展[J]. 金属学报, 2020, 56(4): 444-458.
[7] 赵晓丽, 张永健, 邵成伟, 惠卫军, 董瀚. 两相区退火处理冷轧0.1C-5Mn中锰钢的氢脆敏感性[J]. 金属学报, 2018, 54(7): 1031-1041.
[8] 孙军, 李苏植, 丁向东, 李巨. 氢化空位的基本性质及其对金属力学行为的影响[J]. 金属学报, 2018, 54(11): 1683-1692.
[9] 王康,邓爱红,龚敏,卢晓波,张元元,刘翔. 多能氦离子注入对W金属微结构的影响[J]. 金属学报, 2017, 53(1): 70-76.
[10] 孙永伟,陈继志,刘军. 1000 MPa级0Cr16Ni5Mo钢的氢脆敏感性研究*[J]. 金属学报, 2015, 51(11): 1315-1324.
[11] 闫二虎, 李新中, 唐平, 苏彦庆, 郭景杰, 傅恒志. Nb-Ti-Co氢分离合金近共晶点处的显微组织及其渗氢性能*[J]. 金属学报, 2014, 50(1): 71-78.
[12] 刘玉,李焰,李强. 阴极极化对X80管线钢在模拟深海条件下氢脆敏感性的影响[J]. 金属学报, 2013, 49(9): 1089-1097.
[13] 刘洋,向伟,王博宇. 脉冲离子束辐照对TiH2膜表面微观结构的影响[J]. 金属学报, 2013, 49(10): 1269-1274.
[14] 王艳飞 巩建鸣 蒋文春 姜勇 唐建群. 基于内聚力模型的AISI4135高强钢氢致滞后断裂数值模拟[J]. 金属学报, 2011, 47(5): 594-600.
[15] 王博宇 向伟 谈效华 戴晶怡 程亮 秦秀波. D+离子束辐照对Ti膜的影响[J]. 金属学报, 2010, 46(7): 810-813.