Please wait a minute...
金属学报  2006, Vol. 42 Issue (5): 474-480     
  论文 本期目录 | 过刊浏览 |
热变形低碳钢中奥氏体静态再结晶介观尺度模拟
郑成武;兰勇军; 肖纳敏; 李殿中; 李依依
中国科学院金属研究所
SIMULATION OF STATIC RECRYSTALLIZATION OF HOT DEFORMED AUSTENITE IN A LOW CABON STEEL ON MESOSCALE
中国科学院金属研究所
引用本文:

郑成武; 兰勇军; 肖纳敏; 李殿中; 李依依 . 热变形低碳钢中奥氏体静态再结晶介观尺度模拟[J]. 金属学报, 2006, 42(5): 474-480 .

全文: PDF(1303 KB)  
摘要: 采用晶体塑性有限元(CPFEM)和元胞自动机(CA)耦合的方法模拟了热变形低碳钢的静态再结晶. CPFEM的计算结果定量描述了介观尺度上奥氏体变形储能的不均匀分布, 为模拟再结晶的形核和长大提供了依据, 从而在再结晶CA模型中考虑了不均匀变形的影响.模拟结果显示:变形储能分布不均匀使得再结晶在不同位置的形核密度不同, 形核集中在晶界以及晶内储存能较大的区域;随着临界形核储能的降低, 形核数量增加, 再结晶晶核的位置分布趋于均匀. 对不同形核判据下的再结晶动力学也作了讨论.
关键词 晶体塑性有限元变形储能元胞自动机    
Abstract:Based on the distribution of stored energy in hot deformed austenite simulated by a crystal plasticity finite element method (CPFEM), the static recrystallization of a low carbon steel was investigated by a 2D cellular automaton (CA) model on mesoscale. The effect of the inhomogeneous distribution of the stored energy on the static recrystallization was simulated, which was difficult for the traditional recrystallization CA models. The simulated results revealed that the density of recrystallization nucleation varied in different sites due to the inhomogeneous distribution of stored energy, and the nuclei concentrated both at the grain boundary and in the heavily deformed grain interiors. The number of recrystallized nuclei increased and the distribution of the nucleation inclined to homogeneity with the decreased critical stored energy for nucleation. In addition, the recrystallization kinetics under various nucleation criteria was discussed in the present paper.
Key wordscrystal plasticity finite element model    stored energy    cellular automaton    static recrystallization
收稿日期: 2005-11-29     
ZTFLH:  TG111.7  
[1] Raabe D. Computational Materials Science. Weinheim: Wiley-VCH , 1998: 201
[2] Hesselbarth H W, Gobel I R. Acta Metall Mater, 1991; 39: 2135
[3] Marx V, Reher F R, Gottstein G. Acta Mater, 1999; 47: 1219
[4] Raabe D. Ann Rev Mater Res, 2002; 32: 53
[5] Goetz R L, Seetharaman V. Metall Mater Trans, 1998; 29A: 2307
[6] Ding R, Guo Z X. Acta Mater, 2001; 49: 3163
[7] Kroc J. Lect Note Comp Sci, 2002; 2329: 773
[8] Kugler G, Turk R. Acta Mater, 2004; 52: 4659
[9] Sun J H, Liu Y Z, Zhou L Y. Spec Steel, 2004; 25: 12 (孙景宏,刘雅政,周乐育.特殊钢,2004;25:12)
[10] Dewri R, Chakraborti N. Model Simul Mater Sci Eng, 2005; 13: 173
[11] Doherty R D, Hughes D A, Humphreys F J, Jonas J J, Jensen D J, Kassner M E, King W E, McNelley T R, McQueen H J, Rollett A D. Mater Sci Eng, 1997; A238: 219
[12] Solas D E, Tome C N, Engler O, Wenk H R. Acta Mater, 2001: 49: 3791
[13] Choi S H, Cho J H. Mater Sci Eng, 2005; A405: 86
[14] Hill R, Rice J R. J Int Phys Solids, 2004; 20: 339
[15] Radhakrishnan B, Sarma G B, Zacharia T. Acta Mater, 1998; 46: 4415
[16] Raabe D, Becker R C. Model Simul Mater Sci Eng, 2000; 8: 445
[17] Humphreys F J. Mater Sci Forum, 2004; 467-470: 107
[18] Song X Y, Rettenmayr M, Muller C, Exner H E. Metall Mater Trans, 2001; 32A: 2199
[19] Davies C H J. Scr Mater, 1997; 36: 35
[20] Hutchinson W B. Int Met Rev, 1984; 29: 25
[21] Tong M M, Mo C L, Li D Z, Li Y Y. Chin J Mater Res, 2002; 16: 485 (佟铭明,莫春立,李殿中,李依依.材料研究学报,2002;16: 485)
[22] Read W T, Shockley W. Phys Rev, 1950; 78: 275
[23] Hibbitt, Karlsson and Sorensen. Abaqus/Standard User's Manual, Vol.3, Pawtucket, RI, USA, 1999: 24.2.30-1
[24] Xiao N M, Yue Z F, Lan Y J, Tong M M, Li D Z. Acta Metall Sin, 2005; 41: 496 (肖纳敏,岳珠峰,兰勇军,佟铭明,李殿中.金属学报,2005; 41:496)
[25] Lan Y J, Xiao N M, Li D Z, Li Y Y. Acta Mater, 2005; 53: 991
[26] Rollett A D. Prog Mater Sci, 1997; 42: 79
[27] Rios P R, Padilha A F. Mater Res, 2003; 6: 605
[28] Rollett A D, Srolovitz D J, Doherty R D, Anderson M P. Acta Metall Mater, 1989; 37: 627
[1] 李学雄,徐东生,杨锐. 双相钛合金高温变形协调性的CPFEM研究[J]. 金属学报, 2019, 55(7): 928-938.
[2] 方辉,薛桦,汤倩玉,张庆宇,潘诗琰,朱鸣芳. 定向凝固糊状区枝晶粗化和二次臂迁移的实验和模拟[J]. 金属学报, 2019, 55(5): 664-672.
[3] 朱鸣芳, 邢丽科, 方辉, 张庆宇, 汤倩玉, 潘诗琰. 合金凝固枝晶粗化的研究进展[J]. 金属学报, 2018, 54(5): 789-800.
[4] 王同敏, 魏晶晶, 王旭东, 姚曼. 合金凝固组织微观模拟研究进展与应用[J]. 金属学报, 2018, 54(2): 193-203.
[5] 魏雷, 曹永青, 杨海欧, 林鑫, 王猛, 黄卫东. 粉末床激光重熔条件下Ni-Sn反常共晶微观组织的数值模拟[J]. 金属学报, 2018, 54(12): 1801-1808.
[6] 朱鸣芳, 汤倩玉, 张庆宇, 潘诗琰, 孙东科. 合金凝固过程中显微组织演化的元胞自动机模拟*[J]. 金属学报, 2016, 52(10): 1297-1310.
[7] 陈守东,刘相华,刘立忠,宋孟. Cu极薄带轧制中滑移与变形的晶体塑性有限元模拟*[J]. 金属学报, 2016, 52(1): 120-128.
[8] 陈瑞, 许庆彦, 吴勤芳, 郭会廷, 柳百成. Al-7Si-Mg合金凝固过程形核模型建立及枝晶生长过程数值模拟*[J]. 金属学报, 2015, 51(6): 733-744.
[9] 张蕾, 赵红蕾, 朱鸣芳. 球墨铸铁凝固显微组织的元胞自动机模拟*[J]. 金属学报, 2015, 51(2): 148-158.
[10] 赵九洲, 李璐, 张显飞. 合金凝固过程元胞自动机模型及模拟方法的发展*[J]. 金属学报, 2014, 50(6): 641-651.
[11] 张航, 许庆彦, 史振学, 柳百成. DD6高温合金定向凝固枝晶生长的数值模拟研究*[J]. 金属学报, 2014, 50(3): 345-354.
[12] 李正扬,朱鸣芳,戴挺. Al-7%Si合金显微气孔形成的模拟研究[J]. 金属学报, 2013, 49(9): 1032-1040.
[13] 张显飞,赵九洲. 来流对Al-Cu合金三维树枝晶生长的影响[J]. 金属学报, 2012, 48(5): 615-620.
[14] 石玉峰 许庆彦 柳百成. 定向凝固共晶生长的元胞自动机数值模拟[J]. 金属学报, 2012, 48(1): 41-48.
[15] 赵九洲 江鸿翔. 枝晶生长的三维元胞自动机模拟[J]. 金属学报, 2011, 47(9): 1099-1104.