Please wait a minute...
金属学报  2013, Vol. 49 Issue (10): 1269-1274    DOI: 10.3724/SP.J.1037.2013.00122
  论文 本期目录 | 过刊浏览 |
脉冲离子束辐照对TiH2膜表面微观结构的影响
刘洋1,2),向伟2),王博宇2)
1) 兰州大学核科学与技术学院, 兰州 730000
2) 中国工程物理研究院, 绵阳 621900
EFFECT OF IRRADIATION WITH PULSED ION BEAM ON THE MICROSTRUCTURE OF TiH2
LIU Yang1,2), XIANG Wei2), WANG Boyu2)
1) School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000
2) China Academy of Engineering Physics, Mianyang 621900
引用本文:

刘洋,向伟,王博宇. 脉冲离子束辐照对TiH2膜表面微观结构的影响[J]. 金属学报, 2013, 49(10): 1269-1274.
LIU Yang, XIANG Wei, WANG Boyu. EFFECT OF IRRADIATION WITH PULSED ION BEAM ON THE MICROSTRUCTURE OF TiH2[J]. Acta Metall Sin, 2013, 49(10): 1269-1274.

全文: PDF(2268 KB)  
摘要: 

TEMP-6型强流脉冲离子束装置上, 利用能量密度0.1-0.5 J/cm2,脉宽100 ns, 能量100 keV的C+和H+混合离子束对TiH2膜进行逐次轰击以研究其在脉冲能量下的稳定性.采用扫描电镜和表面轮廓仪对TiH2膜辐照前后表面形貌进行研究;利用X射线衍射和慢正电子湮没技术对脉冲离子束辐照前后TiH2膜的物相和缺陷结构进行分析.结果表明: 0.1-0.3 J/cm2的脉冲束流辐照热-力效应不足以导致膜明显熔化和开裂;0.5 J/cm2的脉冲束流辐照致使膜明显熔化并伴随产生大量的网状裂纹.0.1-0.3 J/cm2的脉冲辐照条件下TiH2的物相结构未发生明显变化,而0.5 J/cm2条件下δ-TiH2开始发生向体心四方(bct)结构的非平衡相变,并且随着辐照次数的继续增加膜内开始析出纯Ti的物相.脉冲束流辐照下的热-力学效应导致膜内缺陷的分布发生显著改变,导致膜的慢正电子Doppler展宽谱的S参数在0.5 J/cm2 5次轰击时达最小,而在0.3 J/cm2 1次轰击时最大.

关键词 TiH2脉冲离子束表面形貌慢正电子湮没技术    
Abstract

Titanium has long been of interest as hydrogen storage material since titanium has a high affinity to hydrogen isotopes. Titanium deuteride or tritide is an important nuclear material used in the field of nuclear technology. Investigations concerning hydrogen-titanium system seem to mainly focus on the hydrogen thermal desorption spectra so as to study hydrogen desorption kinetics from metal hydride and to determine the rate-controlling step, but little is known on the evolution of its compositional changes under a much more un-equilibrium condition. In the past two decades, the intense pulsed ion beam (IPIB) technique has received extensive attention as a tool for surface modification of materials. Compared with conventional ion implantation, IPIB irradiation into materials possesses a higher energy density with shorter pulse width and be typical of more intense thermal-mechanical effect. From such a point of view, considering the features of extreme high heating and cooling rate of IPIB, IPIB as a method to evaluate the stability characteristics of titanium hydride film is utilized in order to determine a predictable behavior of the film's evolution under an extreme un-equilibrium external condition. In current study, TiH2 films irradiated by intense pulsed ion beam have been investigated by using scanning electronic microscopy, surface profilometer, X-ray diffraction and slow positron annihilation, in order to evaluate the effect of irradiation with pulsed ion beam on the microstructure of TiH2. Three sets of TiH2 films are irradiated several shots at energy density ranging from 0.1 J/cm2 to 0.5 J/cm2. No noticeable phenomenon of melting and change of phase structures have occurred to samples under irradiation of 0.1-0.3 J/cm2. However, phenomenon of melting and indication of cracking has been detected on the surface after energy density reaches 0.5 J/cm2.Besides, desorption of hydrogen from the film, and a titanium hydride with a body centered tetragonal structure (bct), seldom reported by researchers and formed under extreme conditions, has also been identified only after energy density of IPIB reaches 0.5 J/cm2. S parameter of slow positron annihilation reflects that the crystal defect structures have been greatly changed by IPIB irradiation, in which S parameter reaches a large value at 0.3 J/cm2 with 1 shot, while a small one at 0.5 J/cm2 with 5 shots.

Key wordsTiH2    pulsed ion beam    surface morphology    slow positron annihilation
收稿日期: 2013-03-18     
基金资助:

国家自然科学基金资助项目11205136

作者简介: 刘洋, 男, 1987年生, 博士

[1] Karamanis D. Nucl Instrum Meth, 2002; 195B: 350

[2] Hughey B J. Nucl Instrum Meth, 1995; 95B: 393
[3] Bhosle V, Baburaj E G, Miranova M, Salama K. Mater Sci Eng, 2003; A356: 190
[4] Schur D V, Zaginaichenko S Y U, Adejev V M. Int J Hydrogen Energy, 1996; 21: 1121
[5] Wang Y, Wang P X, Zhang J W. Rare Met, 1995; 19: 348
(王宇, 王佩璇, 张建伟. 稀有金属, 1995; 19: 348)
[6] Shapovalova O M, Babenko E P, Babenko J V. Hydrogen Mater Sci Chem Met Hydrides, 2002; 82: 69
[7] Schwickert M, Carpene E, Lieb K P. Appl Phys Lett, 2004; 84: 5231
[8] Kasess U, Majer G, Stoll M. J Alloys Compd, 1997; 259: 74
[9] Wu H L, Zhao G Q, Zhou Z Y. Nucl Sci Technol, 1996; 19: 326
(伍怀龙, 赵国庆, 周筑颖. 核技术, 1996; 19: 326)
[10] Papazoglou T P, Hepworth M T. Trans Met Soc Alme, 1968; 242: 682
[11] Schwickert M, Carpene E, Lieb K P. Appl Phys Lett, 2004; 84: 5231
[12] Hirooka Y, Miyake M. J Nucl Mater, 1981; 96: 227
[13] Wasilewski R J, Kehl G L. Metallurgia, 1954; 50: 225
[14] Hirooka Y, Miyake M, Sano T. J Nucl Mater, 1981; 96: 227
[15] Wang W E. J Alloys Compd, 1996; 238: 6
[16] Lisowski W, Keim E G, Kaszkur Z, Smithers M A. Appl Surf Sci, 2008; 254: 2629
[17] Masatoshi T, Hiroki K, Setsuo Y, Hamazo N, Katsunobu I. Appl Surf Sci, 2008; 258: 1405
[18] Shulov V A, Nochovnaya N A, Remnev G E, Pellerin F, Monge C P. Surf Coat Technol, 1998; 99: 74
[19] Zhu X P, Lei M K, Ma T C. Nucl Instrum Meth, 2003; 211B: 69
[20] Wang X, Zhang J S, Lei M K. Acta Metall Sin, 2007; 43: 393
(王旭, 张俊善, 雷明凯. 金属学报, 2007; 43: 393)
[21] Lei M K, Dong Z H, Zhang Z, Hu Y F, Zhu X P. Surf Coat Technol, 2007; 201: 5613
[22] Wang B Y, Xiang W, Tan X H, Dai J Y, Cheng L, Qin X B. Acta Metall Sin, 2010; 46: 810
(王博宇, 向伟, 谈效华, 戴晶怡, 程亮, 秦秀波. 金属学报, 2010; 46: 810)
[23] Miao Z, Cheng L L, Hui M W, Scholzc R, Gosele U. Thin Solid Films, 1998; 333: 245
[24] Wu Y C, Jean Y C. Appl Surf Sci, 2006; 252: 3278
[25] Dong Z H, Zhang Z, Liu C, Zhu X P, Lei M K. Appl Surf Sci, 1998; 99: 74
[26] Li P, Lei M K, Zhu X P. Appl Surf Sci, 2010; 257: 72
[27] Han X G, Zhu X P, Lei M K. Surf Coat Technol, 2011; 206: 874
[28] Zhang F G, Zhu X P, Wang M Y, Lei M K. Acta Metall Sin, 2011; 47: 958
(张峰刚, 朱小鹏, 王明阳, 雷明凯. 金属学报, 2011; 47: 958)
[29] Zheng P. J Mater Sci Lett, 1990; 9: 75
[30] Grambole D, Wang T, Herrmann F, Eichhorn F. Nucl Instrum Meth, 2003; 210B: 526
[31] Wang T S, Grambole D, Herrmann F, Peng H B, Wang S W. Surf Interf Anal, 2007; 39: 52
[32] Wang T S, Eichhorn F, Grambole D, Grotzschel R, Herrmann F, Kreissig U, Moller W. Condens Matter, 2002; 14: 11605
[1] 刘海霞, 陈金豪, 陈杰, 刘光磊. NaCl溶液腐蚀后304不锈钢的射流空蚀特征[J]. 金属学报, 2020, 56(10): 1377-1385.
[2] 张锋刚 朱小鹏 王明阳 雷明凯. 强流脉冲离子束辐照WC-Ni硬质密封材料表面改性研究[J]. 金属学报, 2011, 47(7): 958-964.
[3] 王博宇 向伟 谈效华 戴晶怡 程亮 秦秀波. D+离子束辐照对Ti膜的影响[J]. 金属学报, 2010, 46(7): 810-813.
[4] 梁永煌 满瑞林. Al管表面有机杂化膜的制备及性能表征[J]. 金属学报, 2010, 46(12): 1522-1528.
[5] 王旭; 张俊善; 雷明凯 . 强流脉冲离子束辐照对316L不锈钢表面改性的实验研究[J]. 金属学报, 2007, 43(4): 393-398 .
[6] 李健; 朱洁 . 恒电流电沉积法制备Cu-In薄膜的研究[J]. 金属学报, 2006, 42(6): 667-672 .
[7] 苗收谋; 雷明凯 . 强流脉冲离子束辐照金属Ti相变传热的数值分析[J]. 金属学报, 2004, 40(11): 1221-1226 .
[8] 梅显秀; 马腾才 . 强流脉冲离子束辐照W6Mo5Cr4V2高速钢表面改性研究[J]. 金属学报, 2003, 39(9): 926-931 .
[9] 张文魁; 黄辉; 甘永平 . Pd/Y薄膜在气态吸放氢过程中的表面形貌和可转换光学特性[J]. 金属学报, 2003, 39(9): 974-978 .
[10] 郭成言;後藤孝;平井敏雄. 钢表面化学气相沉积TiC晶体的择优取向[J]. 金属学报, 1992, 28(7): 85-89.