Please wait a minute...
金属学报  2006, Vol. 42 Issue (3): 299-304     
  论文 本期目录 | 过刊浏览 |
316L不锈钢在含高温Cl-醋酸溶液中的电化学行为
程学群;李晓刚;杜翠微
北京科技大学腐蚀与防护中心
ELECTROCHEMICAL BEHAVIOR OF 316L STAINLESS STEEL IN ACETIC ACID WITH ADDITION OF Cl- AT HIGH TEMPERATURE
引用本文:

程学群; 李晓刚; 杜翠微 . 316L不锈钢在含高温Cl-醋酸溶液中的电化学行为[J]. 金属学报, 2006, 42(3): 299-304 .

全文: PDF(327 KB)  
摘要: 研究了316L不锈钢在85℃含0.2%KCl,浓度为60%的醋酸水溶液中的腐蚀电化学行为,特别是研究了自腐蚀电位初期变化趋势。测试了空气中钝化24小时后、阴极极化后和阳极极化后,试样在醋酸溶液中自腐蚀电位随时间变化的曲线,结合阴极极化曲线、阳极极化曲线、试样的SEM微观观察和EDS成分分析,初步探讨了316L不锈钢在含Cl-醋酸溶液中的腐蚀电化学行为和点腐蚀发生的机理。研究还发现:在空气中放置24小时后的试样在Cl-醋酸溶液中能自钝化,自腐蚀电位为100mv;经阴极极化后的试样在Cl-醋酸溶液中不能自钝化,其自腐蚀电位为-242±3mv;经阳极极化形成的钝化膜比在空气中自然形成的钝化膜更致密。
关键词 醋酸腐蚀电化学不锈钢    
Abstract:The corrosion and electrochemical behavior of 316L stainless steel in acetic acid solutions at 85℃ has been investigated. Acetic acid concentration tested was 60% and included addition of 0.2% KCl. Of key interest was the trends of corrosion potential on initial period. Corrosion potential–time measurements were undertaken after the samples exposed to the air for 24 h were polarized anodically and cathodically in acetic acid solution. With analyzing of the curves of electrochemical polarization and SEM and EDS data of the samples ,corrosion and electrochemical behavior and mechanism of localized corrosion of 316L stainless steel in acetic acid solution with Cl- were discussed. The results show that the samples exposed to the air previously for 24 h can be passivated automatically in acetic acid solution with Cl- with the corrosion potential remaining 100mV(SCE).No such phenomenon was observed for samples which were cathodically polarized with the corrosion potential stabilizing at a value of -242±3mv. The passive film formed by anodically polarizing is more proof than formed in the air.
Key wordsacetic acid    corrosion    electrochemical    stainless steel
收稿日期: 2005-05-23     
ZTFLH:  TG172.6  
[1] Yu C Y. Corros Protect Petrochem Ind, 1999; 16: 28 (余存烨.石油化工腐蚀与防护, 1999;16:28)
[2] Huang K Y. Appl Chem Ind, 2001; 30(2): 1 (黄魁元.应用化工,2001;30(2):1)
[3] Moreira R M, Franco C V, Joia C J B M, Giordana S, Mattos O R. Corros Sci, 2004; 46: 2987
[4] Cheng X L, Ma H Y, Chen S H, Yu R, Chen X, Yao Z M. Corros Sci, 1998; 41: 321
[5] Liu G Q, Zhu Z Y, Ke W. Acta Metall Sin, 2001; 37: 273 (刘国强,朱自勇,柯伟.金属学报,2001;37:273)
[6] Turnbull A, Ryan A, Willetts A. Corros Sci, 2003; 45: 1051
[7] Wang X Y, Wu Y S, Zhang L, Yu Z Y. Corros Sci Protect Technol, 2000; 12: 311 (汪轩义,吴荫顺,张琳,于正阳.腐蚀科学与防护技术,2000; 12:311)
[8] Otero E, Pardo A, Utrilla M V, Saenz E ,Alvarez J F. Corros Sci, 1998; 40: 1421
[9] Cao C N. Corrosion Electrochemical Principle. Beijing: Chemical Industry Press, 2004: 276 (曹楚南.腐蚀电化学原理.北京:化学工业出版社,2004:276)
[10] Yang D J, Shen Z S. Metal Corrosion Study. Beijing: Metallurgical Industry Press, 1999: 124 (杨德钧,沈卓身.金属腐蚀学.北京:冶金工业出版社,1999: 124)
[11] Wei B M, Hao L. J Chin Soc Corros Protect, 1987; 7: 199 (魏宝明,郝凌.中国腐蚀与防护学报, 1987;7:199)d
[1] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[2] 赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
[3] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[4] 陈润农, 李昭东, 曹燕光, 张启富, 李晓刚. 9%Cr合金钢在含Cl环境中的初期腐蚀行为及局部腐蚀起源[J]. 金属学报, 2023, 59(7): 926-938.
[5] 张奇亮, 王玉超, 李光达, 李先军, 黄一, 徐云泽. EH36钢在不同粒径沙砾冲击下的冲刷腐蚀耦合损伤行为[J]. 金属学报, 2023, 59(7): 893-904.
[6] 李小涵, 曹公望, 郭明晓, 彭云超, 马凯军, 王振尧. 低碳钢Q235、管线钢L415和压力容器钢16MnNi在湛江高湿高辐照海洋工业大气环境下的初期腐蚀行为[J]. 金属学报, 2023, 59(7): 884-892.
[7] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[8] 王滨, 牛梦超, 王威, 姜涛, 栾军华, 杨柯. Cu马氏体时效不锈钢的组织与强韧性[J]. 金属学报, 2023, 59(5): 636-646.
[9] 韩恩厚, 王俭秋. 表面状态对核电关键材料腐蚀和应力腐蚀的影响[J]. 金属学报, 2023, 59(4): 513-522.
[10] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[11] 王京阳, 孙鲁超, 罗颐秀, 田志林, 任孝旻, 张洁. 以抗CMAS腐蚀为目标的稀土硅酸盐环境障涂层高熵化设计与性能提升[J]. 金属学报, 2023, 59(4): 523-536.
[12] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[13] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[14] 廖京京, 张伟, 张君松, 吴军, 杨忠波, 彭倩, 邱绍宇. Zr-Sn-Nb-Fe-V合金在过热蒸汽中的周期性钝化-转折行为[J]. 金属学报, 2023, 59(2): 289-296.
[15] 胡文滨, 张晓雯, 宋龙飞, 廖伯凯, 万闪, 康磊, 郭兴蓬. 共晶高熵合金AlCoCrFeNi2.1H2SO4 溶液中的腐蚀行为[J]. 金属学报, 2023, 59(12): 1644-1654.