Please wait a minute...
金属学报  2005, Vol. 41 Issue (3): 225-230     
  论文 本期目录 | 过刊浏览 |
钢中fcc/bcc(bct)马氏体形核与长大的一种晶体学模型
杨金波;杨志刚;邱冬;张文征;张弛;白秉哲;方鸿生
清华大学材料科学与工程系; 北京 100084
A general crystallographic model of fcc/bcc(bct) martensitic nucleation and growth in steels
YANG Jinbo; YANG Zhigang; QIU Dong; ZHANG Wenzheng; ZHANG Chi; BAI Bingzhe; FANG Hongsheng
Department of Materials Science and Engineering; Tsinghua University; Beijing 100084
引用本文:

杨金波; 杨志刚; 邱冬; 张文征; 张弛; 白秉哲; 方鸿生 . 钢中fcc/bcc(bct)马氏体形核与长大的一种晶体学模型[J]. 金属学报, 2005, 41(3): 225-230 .
, , , , , , . A general crystallographic model of fcc/bcc(bct) martensitic nucleation and growth in steels[J]. Acta Metall Sin, 2005, 41(3): 225-230 .

全文: PDF(265 KB)  
摘要: 将不变线理论和O点阵理论应用于fcc/bcc(bct)马氏体相变的可滑移生长界面的设计, 建立了马氏体形核与长大的晶体学模型. 通过模型分析表明:fcc/bcc(bct)马氏体形核与长大过程是通过(121)fcc型择优界面推移进行的, 界面上的错配位错可以完成马氏体晶体学唯象理论(PTMC)要求的点阵不变变形(LID), 但LID要稍滞后于界面迁移, 即在马氏体形核与长大过程中推移界面新相一侧存在一未发生LID的新相薄区;当相变温度达到马氏体相变点Ms时, 母相奥氏体与这一薄区的晶格常数比为√3/2, 这一几何条件和Olson-Cohen形核模型中要求扩展位错层错区界面能γ≤0是等价的.
关键词 马氏体马氏体晶体学唯象(PTMC)理论变线    
Abstract:The crystallography of fcc/bcc(bct) martensite transformation, including nucleation and growth, has been discussed from the viewpoint of invariant-line and O-lattice theory. The formation of martensite is accomplished by the immigration of well-defined glissile interface (121)fcc type and its misfit dislocations can produce the lattice invariant deformation (LID) on the basis of phenomenal theory of martensitic crystallography (PTMC), however, LID is retarded slightly after the migration of interphase (121)fcc, i.e.a thin plate-like zone exists without LID in martensite near the well-defined interface. When the temperature reduces to the Ms point, the lattice parameter of austenite matrix is √3/2 times that of the martensite without LID. This critical condition for spontaneous transformation agrees with that the stack fault energy in matrix is less than zero according to Olson and Cohen's nucleation model.
Key wordsmartensite    phenomenal theory of martensitic crystallography (PTMC)    invariant line
收稿日期: 2004-05-25     
ZTFLH:  TG111.5  
[1] Cohen M, Olson G B, Clapp P C. In: Owen W S, Cohen M, Wayman C M, eds., Proc Int Conf on Martensitic Transformations, ICOMAT 79, Cambridge, Mass: MIT Press, 1979: 1
[2] Christian J W. Mater Sci Eng, 1990; A127: 215
[3] Aaronson H I, Hall M G. Metall Mater Trans, 1994; 25A: 1797
[4] Olson G B, Cohen M. Metall Trans, 1976; 7A: 1905
[5] Olson G B, Cohen M. Metall Trans, 1976; 7A: 1915
[6] Bogers A J, Burgers W G. Acta Metall, 1964; 12: 255
[7] Roytburd A L, Khachaturyan A G. Phys Met Metall, 1970; 30: 68
[8] Kurdjumov G V, Khachaturyan A G. Acta Metall, 1975; 23: 1077
[9] Wechsler M S, Lieberman D S, Read T A. Trans AIME, 1953; 197: 1503
[10] Bowles J S, Mackenzie J K. Acta Metall, 1954; 2: 129
[11] Dahmen U, Westmacott K H. In: Aaronson H I, et al, eds., Proc Int Conf on Solid-Solid Phase Transformation, Warrendale, Pa: The Metallurgical Society of AIME, 1981: 433
[12] Dahmen U. Acta Metall, 1982; 30: 63
[13] Luo C P, Weatherly G C. Acta Metall, 1987; 35: 1963
[14] Zhang W Z, Purdy G R. Philos Mag, 1993; 68A: 291
[15] Zhang W Z, Weatherly G C. Acta Mater, 1998; 46: 1837
[16] Qiu D, Zhang W Z. Philos Mag, 2003; 83: 3093
[17] Frank F C. Acta Metall, 1953; 1: 15
[18] Srinivasan G R, Wayman C M. Acta Metall, 1968; 16: 621
[19] Hirth J P, Spanos G, Hall M G, Aaronson H I. Acta Mater, 1998; 46: 857
[20] Liu X, Zhong F, Zhang J X, Zhang M X, Kang M K, Guo Z Q. Phys Rev, 1995; 52B: 9970
[21] Ridley N, Stuart H, Zwell L. TMS AIME, 1969; 245: 1834
[22] Wayman C M. Introduction to the Crystallography of Martensitic Transformations. New York: The MacMil-lan Co., 1964: 146
[23] Greninger A B, Troiano A R. Trans AIME, 1940; 140: 307
[24] Greninger A B, Troiano A R. Trans AIME, 1949; 185: 590
[25] Otte H M, Read T A. Trans AIME, 1957; 209: 412
[26] Johnson K A, Wayman C M. Acta Crystallogr, 1963; 16: 480
[27] Read R P. Acta Metall, 1962; 10: 865
[28] Moritani T, Miyajima N, Furuhara T, Maki T. Scr Mater, 2002; 47: 193
[1] 王周头, 袁清, 张庆枭, 刘升, 徐光. 冷轧中碳梯度马氏体钢的组织与力学性能[J]. 金属学报, 2023, 59(6): 821-828.
[2] 王滨, 牛梦超, 王威, 姜涛, 栾军华, 杨柯. Cu马氏体时效不锈钢的组织与强韧性[J]. 金属学报, 2023, 59(5): 636-646.
[3] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[4] 陈学双, 黄兴民, 刘俊杰, 吕超, 张娟. 一种含富锰偏析带的热轧临界退火中锰钢的组织调控及强化机制[J]. 金属学报, 2023, 59(11): 1448-1456.
[5] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[6] 侯旭儒, 赵琳, 任淑彬, 彭云, 马成勇, 田志凌. 热输入对电弧增材制造船用高强钢组织与力学性能的影响[J]. 金属学报, 2023, 59(10): 1311-1323.
[7] 李小琳, 刘林锡, 李雅婷, 杨佳伟, 邓想涛, 王海丰. 单一 MX 型析出相强化马氏体耐热钢力学性能及蠕变行为[J]. 金属学报, 2022, 58(9): 1199-1207.
[8] 李伟, 贾兴祺, 金学军. 高强韧QPT工艺的先进钢组织调控和强韧化研究进展[J]. 金属学报, 2022, 58(4): 444-456.
[9] 郑椿, 刘嘉斌, 江来珠, 杨成, 姜美雪. 拉伸变形对高氮奥氏体不锈钢显微组织和耐腐蚀性能的影响[J]. 金属学报, 2022, 58(2): 193-205.
[10] 朱彬, 杨兰, 刘勇, 张宜生. 基于纳米压痕逆算法的热冲压马氏体/贝氏体双相组织的微观力学性能[J]. 金属学报, 2022, 58(2): 155-164.
[11] 陈维, 陈洪灿, 王晨充, 徐伟, 罗群, 李谦, 周国治. Fe-C-Ni体系膨胀应变能对马氏体转变的影响[J]. 金属学报, 2022, 58(2): 175-183.
[12] 原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.
[13] 韩汝洋, 杨庚蔚, 孙新军, 赵刚, 梁小凯, 朱晓翔. 钒微合金化中锰马氏体耐磨钢奥氏体晶粒长大行为[J]. 金属学报, 2022, 58(12): 1589-1599.
[14] 陈胜虎, 戎利建. 超细晶铁素体-马氏体钢的高温氧化成膜特性及其对Pb-Bi腐蚀行为的影响[J]. 金属学报, 2021, 57(8): 989-999.
[15] 薛克敏, 盛杰, 严思梁, 田文春, 李萍. 模压变形中国低活化马氏体钢沉淀相对其力学性能的影响[J]. 金属学报, 2021, 57(7): 903-912.