Please wait a minute...
金属学报  1998, Vol. 34 Issue (7): 705-712    
  论文 本期目录 | 过刊浏览 |
Zr及Zr-4合金的循环耗散能、分形维数与疲劳寿命的关系
肖林;顾海澄
西安交通大学金属材料强度国家重点实验室;西安;710049;西安交通大学金属材料强度国家重点实验室;西安;710049
THE RELATIONSHIP BETWEEN PLASTIC DISSIPATED ENERGY, FRACTAL DIMENSION AND FATIGUE- LIFETIME OF ZIRCONIUM AND ZIRCALOY-4
XIAO Lin; GU Haicheng(State Key Laboratory for Mechanical Behaviour of Materials; Xi'an Jiaotong Universityl Xi'an 710049)
引用本文:

肖林;顾海澄. Zr及Zr-4合金的循环耗散能、分形维数与疲劳寿命的关系[J]. 金属学报, 1998, 34(7): 705-712.
, . THE RELATIONSHIP BETWEEN PLASTIC DISSIPATED ENERGY, FRACTAL DIMENSION AND FATIGUE- LIFETIME OF ZIRCONIUM AND ZIRCALOY-4[J]. Acta Metall Sin, 1998, 34(7): 705-712.

全文: PDF(698 KB)  
摘要: 测定了纯Zr及Zr—4合金在室温和400℃下低周疲劳寿命曲线分别选用循环塑性耗散应变能和疲劳断回表面分形维数作为疲劳损伤参量,根据Zr及Zr-4合金表现为循环硬化、饱和、再软化三阶段的特征,建立了不同变形阶段的累积塑性耗散应变能表达式结果表明,不同塑性应变幅下循环塑性耗散应变能与疲劳寿命之间满足指数关系疲劳断口表面分形分析表明:分形维数与疲劳寿命之间也满足指数关系循环塑性耗散能、分形维数与疲劳寿命三者之间的定量关系为:D≈0.027lnNf+1.099≈0.120lnWpt-0.025,并从热力学角度对其物理背景作了初步探讨
关键词 ZrZr-4合金循环塑性耗散应变能分形维数疲劳寿命    
Abstract:Low cycle fatigue lifetime curves of zirconium and zircaloy-4 at room temperature and 400 ℃ were measured, respectively. Cyclic plastic dissipated energy and fractal dimension of fracture surfaces are selected as damage variable to evaluate the fatigue lifetime. The accumulated formula of plastic dissipated energy is established on the basis of considering cyclic deformation character of zirconium and zircaloy-4. The test results indicate that the relationship between cyclic plastic dissipated energy and fatigue lifetime fits power law. Fractal analysis of fracture surface shows that the relationship between fractal dimension and fatigue lifetime can be also expressed as power law. An empirical formula describing the relationship between dissipated energy, fractal dimension and fatigue lifetime, D ≈ 0.027 lnN f + 1.099 ≈0.120 lnWpf- 0.025, is obtained, and their physical mechanism is discussed thermodynamically.
Key wordszirconium    zircaloy-4    cyclic plastic dissipated energy    fatigue lifetime
收稿日期: 1998-07-18     
基金资助:国家自然科学(青年)基金!59601009;;核工业科学基金!H7196EY702
1 Xiao Lin, Gu Haichen.Metall Mater Trans,1997;28A:1021
2肖林.见:覃正主编博士后纵横谈─—值得关注的若干科技新动态,西安:西安交通大学出版社,1996:61(Xiao Lin.In:Qin Zheng ed,Postdoctor Talk Freely,Xi'an:Xi'an Jiaotong University Publisher,1996:61)
3 Xiao Lin, Gu Haicheng. ASME: J Eng Mater Technol, 1998; 120: 114
4 肖林,顾海澄,匡震邦稀有金属材料与工程,19952 24(2):22 (Xiao Lin, Gu Haicheng, Kuang Zhenbang. Rare Met Mate, Eng, 1995 24(2): 22)
5 Lefebvre D, Ellvin E. Int J Fatigue, 1984; 6: 83
6 Nam S W, Hong S K, Lee J M, Rie K T. In: Rie K T ed., Low Cycle Fatigue and Elasto-Plastic Behavior ofMaterials, England, Ebevier Applied Science, 1987: 229
7 Radhakrishnan V M. ASTM STP 770, 1982: 135
8 Xiao Lin, Gu Haicheng. Acta Metall Sin (Engl Lett), 1995; 8: 219
9 Xiao Lin, Gu Haicheng. Int J Fatigue, 1994; 16: 417
10 董连科.分形理论及其应用.沈阳:辽宁科学技本出版社,1991:20(Dong Lianke.Fractal Theory and Application.Shenyang:Liaoning Science Technology Publisher,1991: 20)
11 Glansdorff P, Prigogine I. Thermodynamic Theory of Structure, Stability and Fluctuations. New York:Wiley-Interscience, 1971: 96
12 Seeger A. In: Kettunen P O, Lepisto T K, Lehtonen M E eds., Strenyth of Metall Alloys, Vol. I, Oxford:Pergamon Press, 1988: 463
13 Nicolics G, Prigoginel著,徐锡中,陈式刚,王光瑞,陈雅深译非平衡系统的自组织北京:科学出版社,1991:58(Nicolics G,Prigogine I,Transation by Xu Xishen,Chen shigang,Wang Guangrui,Chen Yashen.Self Organization in Nonequilibrium Systems.Beijing:Science Press,1991:58)
14 Prigogine I. Introduction to Thermodynamics of Irreversible Processes.3rd ed, New York: Interscience, 1967:24
[1] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[2] 杨杜, 白琴, 胡悦, 张勇, 李志军, 蒋力, 夏爽, 周邦新. GH3535合金中晶界特征对碲致脆性开裂影响的分形分析[J]. 金属学报, 2023, 59(2): 248-256.
[3] 廖京京, 张伟, 张君松, 吴军, 杨忠波, 彭倩, 邱绍宇. Zr-Sn-Nb-Fe-V合金在过热蒸汽中的周期性钝化-转折行为[J]. 金属学报, 2023, 59(2): 289-296.
[4] 杨天野, 崔丽, 贺定勇, 黄晖. 选区激光熔化AlSi10Mg-Er-Zr合金微观组织及力学性能强化[J]. 金属学报, 2022, 58(9): 1108-1117.
[5] 宋文硕, 宋竹满, 罗雪梅, 张广平, 张滨. 粗糙表面高强铝合金导线疲劳寿命预测[J]. 金属学报, 2022, 58(8): 1035-1043.
[6] 耿遥祥, 唐浩, 许俊华, 张志杰, 喻利花, 鞠洪博, 江乐, 简江林. 选区激光熔化高强Al-(Mn, Mg)-(Sc, Zr)合金成形性及力学性能[J]. 金属学报, 2022, 58(8): 1044-1054.
[7] 宋庆忠, 潜坤, 舒磊, 陈波, 马颖澈, 刘奎. 镍基高温合金K417G与氧化物耐火材料的界面反应[J]. 金属学报, 2022, 58(7): 868-882.
[8] 林研, 司丞, 徐京豫, 刘泽, 张诚, 柳林. 选区激光熔化高强韧铝合金的异质结构调控及力学性能[J]. 金属学报, 2022, 58(11): 1509-1518.
[9] 高运明, 何林, 秦庆伟, 李光强. 利用ZrO2 固体电解质研究Na3AlF6-SiO2 熔盐中的电沉积[J]. 金属学报, 2022, 58(10): 1292-1304.
[10] 王凯冬, 刘允中, 詹强坤, 黄斌. 形核剂的添加方式对选区激光熔化成形含锆Al-Cu-Mg合金显微组织与力学性能的影响[J]. 金属学报, 2022, 58(10): 1281-1291.
[11] 潘庆松, 崔方, 陶乃镕, 卢磊. 纳米孪晶强化304奥氏体不锈钢的应变控制疲劳行为[J]. 金属学报, 2022, 58(1): 45-53.
[12] 丁宁, 王云峰, 刘轲, 朱训明, 李淑波, 杜文博. 高应变速率多向锻造Mg-8Gd-1Er-0.5Zr合金的微观组织、织构及力学性能[J]. 金属学报, 2021, 57(8): 1000-1008.
[13] 叶俊杰, 贺志荣, 张坤刚, 杜雨青. 时效对Ti-50.8Ni-0.1Zr形状记忆合金显微组织、拉伸性能和记忆行为的影响[J]. 金属学报, 2021, 57(6): 717-724.
[14] 皮慧龙, 石小磊, 徐兴祥. SiZr液相烧结法制备SiC-ZrC涂层对C/SiC复合材料抗氧化性能的影响[J]. 金属学报, 2021, 57(6): 791-796.
[15] 曹江海, 侯自兵, 郭中傲, 郭东伟, 唐萍. 过热度对轴承钢凝固组织整体形貌特征及渗透率的影响[J]. 金属学报, 2021, 57(5): 586-594.