Please wait a minute...
金属学报  2021, Vol. 57 Issue (6): 791-796    DOI: 10.11900/0412.1961.2020.00357
  研究论文 本期目录 | 过刊浏览 |
SiZr液相烧结法制备SiC-ZrC涂层对C/SiC复合材料抗氧化性能的影响
皮慧龙1, 石小磊2(), 徐兴祥2
1.西北工业大学 超高温结构复合材料重点实验室 西安 710072
2.中国科学院金属研究所 沈阳 110016
Effect of SiC-ZrC Coating Prepared by SiZr Liquid Phase Sintering on the Oxidation Resistance of C/SiC Composites
PI Huilong1, SHI Xiaolei2(), XU Xingxiang2
1.State Key Laboratory of Thermostructural Composite Materials, Northwestern Polytechnical University, Xi'an 710072, China
2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

皮慧龙, 石小磊, 徐兴祥. SiZr液相烧结法制备SiC-ZrC涂层对C/SiC复合材料抗氧化性能的影响[J]. 金属学报, 2021, 57(6): 791-796.
Huilong PI, Xiaolei SHI, Xingxiang XU. Effect of SiC-ZrC Coating Prepared by SiZr Liquid Phase Sintering on the Oxidation Resistance of C/SiC Composites[J]. Acta Metall Sin, 2021, 57(6): 791-796.

全文: PDF(7338 KB)   HTML
摘要: 

使用Si-25%Zr (质量分数)合金通过液相烧结法在C/SiC复合材料表面制备了SiC-ZrC抗氧化涂层,研究了烧结过程中涂层的相结构演化,并测试了1400℃及空气气氛下材料的抗氧化性能,分析了涂层氧化前后显微结构的变化,以及氧化对C/SiC复合材料弯曲性能的影响。结果表明,Zr元素在涂层中以ZrC相的形式存在,ZrC颗粒的引入细化了反应SiC层的组织,在氧化过程中形成致密连续的SiO2薄膜,并在氧化500 s后试样出现增重,制备了SiC-ZrC抗氧化涂层的C/SiC样品在1000 s的氧化实验后弯曲强度下降低于5%。

关键词 抗氧化涂层SiC-ZrC液相烧结    
Abstract

Owing to their low density and good mechanical properties at high temperatures, C/SiC composites are increasingly used in the aerospace industry. They are also being proposed as thermal-structural materials in the hypersonic field; however, C/SiC composites are easily oxidized in high-temperature air environments. In this study, a C/SiC composite was coated with a SiC-ZrC oxidation-resistant layer by a two-step sintering method using Si-25%Zr (mass fraction) alloy, and the phase evolution of the coating was studied during the sintering. The oxidation resistance of the material was then tested at 1400oC in an air environment. The microstructural changes of the coating before and after oxidation and the effect of oxidation on the bending properties of C/SiC were analyzed. After the reaction with carbon, Si and ZrSi2 disappear in the coating, leaving only pure ZrC and SiC. The ZrC phase refined the structure of the reactive SiC layer. The grain size of the sintered SiC was 2 μm, versus 5-20 μm for SiC sintered from pure Si. The refined grains created a dense and continuous SiO2 film during the oxidation process. As the oxidation time was increased at 1400oC, the C/SiC composite with the SiC-ZrC coating began losing weight at 200 s, but began gaining weight at 500 s as a dense SiO2 film was formed. After 1000 s of oxidation, the flexural strength of the C/SiC composites was 335 MPa, only 5% lower than that of the initial C/SiC composite. According to this result, the sintered SiC-ZrC oxidation-resistant film effectively protected the mechanical properties of the C/SiC composite during the oxidation process.

Key wordsoxidation resistant coating    SiC-ZrC    liquid-phase sintering
收稿日期: 2020-09-09     
ZTFLH:  TB332  
作者简介: 皮慧龙,男,1988年生,博士生
图1  反应烧结C/SiC复合材料截面形貌的SEM像
图2  C/SiC-Si试样表面形成SiC涂层截面和表面形貌的SEM像
图3  C/SiC-SiZr试样表面形成SiC-ZrC涂层截面和表面形貌的SEM像
图4  C/SiC-Si和C/SiC-SiZr试样表面涂层的XRD谱
图5  不同烧结涂层的C/SiC 复合材料试样在1400℃不同时间氧化前后的质量比
图6  不同烧结涂层的C/SiC 复合材料试样在1400℃氧化1000 s后表面的SEM像
1 Nie T, Liu W Q. Application of C/SiC composites in thermal protection system of nose-cone [J]. Comput. Simul., 2013, 30(9): 109
1 聂 涛, 刘伟强. C/SiC复合材料在鼻锥热防护系统中的应用研究 [J]. 计算机仿真, 2013, 30(9): 109
2 Xiao P, Xiong X, Zhang H B, et al. Progress and application of C/C-SiC ceramic braking materials [J]. Chin. J. Nonferrous Met., 2005, 15: 667
2 肖 鹏, 熊 翔, 张红波等. C/C-SiC陶瓷制动材料的研究现状与应用 [J]. 中国有色金属学报, 2005, 15: 667
3 Ma Q S, Liu H T, Pan Y, et al. Research progress on the application of C/SiC composites in scramjet [J]. J. Inorg. Mater., 2013, 28: 247
3 马青松, 刘海韬, 潘 余等. C/SiC复合材料在超燃冲压发动机中的应用研究进展 [J]. 无机材料学报, 2013, 28: 247
4 Zhu X J, Xia Y W. Application of C/SiC composites in space optical system abroad [J]. Aerosp. Mater. Technol., 2013, 43(4): 20
4 朱晓娟, 夏英伟. C/SiC材料在国外空间光学系统上的应用 [J]. 宇航材料工艺, 2013, 43(4): 20
5 Zhang Y, Feng D, Chen X C. Development of properties and process on continuous fiber reinforced SiC composite [J]. Mater. Rev., 2005, 19(3): 63
5 张 勇, 冯 涤, 陈希春. 连续纤维增强SiC复合材料制备工艺与性能研究进展 [J]. 材料导报, 2005, 19(3): 63
6 Xie W J, Qiu H P, Chen M W, et al. Influence of carbon fiber treatment on flexural properties of C/SiC composites [J]. Solid State Phenom., 2018, 281: 408
7 Li J S, Zhang C R, Li B. Advances in boron nitride interphases in ceramic matrix composites [J]. Mater. Rev., 2011, 25(17): 14
7 李俊生, 张长瑞, 李 斌. 陶瓷基复合材料中氮化硼界面相研究进展 [J]. 材料导报, 2011, 25(17): 14
8 Li C G. Effects of elevated temperature on the structures and tensile properties of PAN-based carbon fibers [D]. Harbin: Harbin Institute of Technology, 2014
8 李承高. 高温处理对PAN基碳纤维结构与拉伸性能的影响 [D]. 哈尔滨: 哈尔滨工业大学, 2014
9 Wen H M, Dong S M, Ding Y S, et al. SiC/Yb2SiO5 multilayer coatings for oxidation protection of Cf/SiC composites [J]. Rare Met. Mater. Eng., 2009, 38: 1580
9 温海明, 董绍明, 丁玉生等. Cf/SiC复合材料SiC/Yb2SiO5抗氧化复合涂层研究 [J]. 稀有金属材料与工程, 2009, 38: 1580
10 Ma Q S, Cai L H. Fabrication of Y2Si2O7 coating and its oxidation protection for C/SiC composites [J]. Trans. Nonferrous Met. Soc. China, 2017, 27: 390
11 Ma Q S, Cai L H. Fabrication and oxidation resistance of mullite/yttrium silicate multilayer coatings on C/SiC composites [J]. J. Adv. Ceram., 2017, 6: 360
12 Zhang W H, Cheng L F, Zhang L T, et al. Preparation and anti-oxidation behavior of Si-C-B self-healing coating on C/SiC composite [J]. J. Inorg. Mater., 2008, 23: 774
12 张伟华, 成来飞, 张立同等. C/SiC复合材料表面Si-C-B自愈合涂层的制备与抗氧化行为 [J]. 无机材料学报, 2008, 23: 774
13 Yan Z Q, Xiong X, Xiao P, et al. Preparation of SiC coatings on surface of C/SiC composites by the chemical vapor deposition and their oxidation resistance behavior [J]. J. Chin. Ceram. Soc., 2008, 36: 1098
13 闫志巧, 熊 翔, 肖 鹏等. C/SiC复合材料表面化学气相沉积涂覆SiC涂层及其抗氧化性能 [J]. 硅酸盐学报, 2008, 36: 1098
14 Cheng L F, Xu Y D, Zhang L T, et al. Oxidation and defect control of CVD SiC coating on three-dimensional C/SiC composites [J]. Carbon, 2002, 40: 2229
15 Wu S J, Cheng L F, Zhang L T, et al. Oxidation behavior of 2D C/SiC with a multi-layer CVD SiC coating [J]. Surf. Coat. Technol., 2006, 200: 4489
16 Hwang K J, Bae S Y, Kim K H, et al. Controlled infiltration profile of SiC coating layer on graphite by Si vapor deposition reaction [J]. J. Ceram. Process. Res., 2019, 20: 169
17 Kang P C, Chen G Q, Zhang B, et al. Oxidation protection of carbon fibers by a reaction sintered nanostructured SiC coating [J]. Surf. Coat. Technol., 2011, 206: 305
18 Zhao Y W, Sun W T, Li J P, et al. Preparation and microstructure of C/C-SiC composites by reactive melt infiltration [J]. Aerosp. Mater. Technol., 2013, (2): 64
18 赵彦伟, 孙文婷, 李军平等. C/C-SiC复合材料的反应熔渗法制备与微观组织 [J]. 宇航材料工艺, 2013, (2): 64
19 Yan Z Q, Xiong X, Xiao P, et al. Oxidation kinetics and mechanism of C/SiC composites fabricated by MSI process [J]. J. Inorg. Mater., 2007, 22: 1151
19 闫志巧, 熊 翔, 肖 鹏等. MSI工艺制备C/SiC复合材料的氧化动力学和机理 [J]. 无机材料学报, 2007, 22: 1151
20 Wang J P, Jin Z H, Qian J M, et al. Research progress on mechanism and kinetics of C/C-SiC composites prepared by reactive melt infiltration [J]. J. Chin. Ceram. Soc., 2005, 33: 1120
20 王继平, 金志浩, 钱军民等. 反应熔渗法制备C/C-SiC复合材料及其反应机理和动力学的研究进展 [J]. 硅酸盐学报, 2005, 33: 1120
21 Pampuch R, Walasek E, Bialoskórski J. Reaction mechanism in carbon-liquid silicon systems at elevated temperatures [J]. Ceram. Int., 1986, 12: 99
22 Sawyer G R, Page T F. Microstructural characterization of “REFEL” (reaction-bonded) silicon carbides [J]. J. Mater. Sci., 1978, 13: 885
23 Ness J N, Page T F. Microstructural evolution in reaction-bonded silicon carbide [J]. J. Mater. Sci., 1986, 21: 1377
24 He Z J, Sun L B, Li C, et al. Wetting and brazing of Cf /C composites with Si-Zr eutectic alloy: The formation of nano- and coarse-SiC reaction layers [J]. Carbon, 2020, 167: 92
25 Yin X G. Study on mechanic and high-temperature properties of C/SiC ceramic based composites [D]. Beijing: Tsinghua University, 2011
25 殷晓光. C/SiC陶瓷基复合材料的力学及高温性能研究 [D]. 北京: 清华大学, 2011
[1] 高庆;章守华;胡本芙;李慧英. 粉末Rene'95高温合金中项链组织的形成[J]. 金属学报, 1996, 32(10): 1019-1022.
[2] 樊永年;汤宝珍;乔桂文. 液相烧结制备织构(123+211)的YBa_2Cu_3O_(7-x)超导体[J]. 金属学报, 1993, 29(10): 87-91.