Please wait a minute...
金属学报  1997, Vol. 33 Issue (3): 225-232    
  论文 本期目录 | 过刊浏览 |
脆-韧转变的模型化(英文)
P.B.HirschFRS
DepartmentofMaterials;UniversityofOxford;ParksRoad;OxfordOX13PH;UK
MODELLING THE BRITTLE-DUCTILE TRANSITION
P. B. Hirsch FRS(Department of Materials; University of Oxford; Parks Road; Oxford OX1 3 PH; UK Manuscript received )
引用本文:

P.B.HirschFRS. 脆-韧转变的模型化(英文)[J]. 金属学报, 1997, 33(3): 225-232.
. MODELLING THE BRITTLE-DUCTILE TRANSITION[J]. Acta Metall Sin, 1997, 33(3): 225-232.

全文: PDF(644 KB)  
摘要: 众多结晶体在低温环境下呈现解理断裂,在高温环境下呈现塑性断裂在过渡温区,解理断裂的应力随温度增加而增加,反映了屈服应力的下降以及裂纹尖端区塑性的相应增加.裂尖塑性可钝化裂纹并因塑性区中的压应力而屏蔽裂纹本文简短评述了脆一韧转变模型在该模型中,计算屏蔽效应的塑性区是由位错的产生、运动和相互作用形成的,这些位错均在含裂尖的滑移面上运动,并且服从速度/应力/温度定律.对模型在实验结果中的应用也进行了讨论.
关键词 脆一韧转变模型化裂纹尖端位错    
Abstract:Many crystalline solids fail by cleavage at low temperatures. and by plastic processes at high temperatures. In the transition region cleavage failure occurs at stresses increasing with increasing temperature. reflecting a decrease in yield stress. and a consequent increase of plasticity around the crack tip. Crack tip plasticity blunts the crack and shields it through compressive stresses in the plastic zone. This paper gives a brief review of a model of the brittle-ductile transition in which the shielding is calculated from a plastic zone formed by the generation (from a source). motion and interaction of dislocations moving on a slip plane containing the crack tip. and obeying a velocity/stress/temperature law. The application of the model to experiments is discussed.
Key wordsbrittle-ductile transition    modelling    crack tip    dislocation
收稿日期: 1997-03-18     
1 A. Keily, W.R. Tyson and A.H. Cottrell, Philos Mag. 15 (1967) 567.
2 J.R. Rice, R. Thomson, Philos. Mad. 29 (1974) 73.
3 C. Schoeck, Philos Mad. A63 (1991 ) 111.
4 J.R. Rice, J. Mech. Phys. Solids 40 (1992) 239.
5 J.R. Rice and C.E. Beltz, J. Mech. Phys. Solid 42 (1994) 233.
6 P.B. Hirsch, S.G. Roberts and J. Samuels, Proc. R. Soc. London A421 (1989) 25.
7 X. Maeda and S. Fujita, Lattice Defects Ceramics 2 (1989) 25.
8 M. Brede and P. Haasen, Acla Melall. 36 (1988) 2003.
9 H. Huang and W.W. Gerberich, Acta Melall. Maler. 42 (194) 639.
10 V.R. Nitzsche and K.J. Hsia, Maler Sci. Eng. A176 (1994) 155.
11 P.B. Hirsch and S.G. Roberts, Philos. Mad. A64 (1991) 55.
12 P.B. Hirsch and S.G. Roberts, Acla Melall. Mater. 44 (1996) 2361.
13 P.B. Hirsch and S.G. Roberts, Philos. Trans. R. Soc. London, in press.
14 F.C. Serbena, PhD D Dissertation, University of Oxford (1995).
15 F.C. Serbena, S.G. Roberts and P.B. Hirsch, Ser. Metall. Mater., in press.
16 V. Lakshmanan and J.C.M. Li, Mater. Sci. Eng. A104 (1988) 95.
17 I.-H. Lin and R. Thomson, Acta Melall. 34 (1986) 187
18 R. Thomson, Physics of Fracture, in Soild State Phsysics(39), eds. H. Ehrenreich and D. Turnbull(Academic Press, London, 1986)p. 1-129.
19 S.G. Roberts, P.B. Hirsch, A.S. Booth, M. Ellis and F.C. Serbena. Phys. Scr. T49 (J993) 420.
20 S.G. Roberts, A.S. Booth and P.B. Hirsch, Maler. Sci. Eng. A176 (1994) 91.
21 P.B. Hirsch, Crack-tip plasticity and quasi-brittle fracture of single crystals. in Plastic Deformationof Ceramics, eds. R. Bradt, C.Brooks and J. Routbort (Plenum Press, New York. 1995) p. 1-20
22 R.O. Ritchie, J.F. Knott and J.R. Rice, J. Mech. Phys. Solids 21 (1973) 395.
23 M. Ellis, PhD Dissertation, University of Oxford (1991).
24 T. Imura and H. Saka, Mem. Fac. Nagoya Univ. 28 (1976) 55.
25 J. Weertman, J.uH. Lin and R. Thomson, Acta Metall. 31 (1983) 473.
26 J.R. Patel and A.R. Chaudhuri, Phys. Rev. 143 (1966) 601.
27 J. Heslop and N.J. Petch, Philos. Mag. 3 (1958) 1128.
28 A.C. Koo, Trans. AIME 280 (1963) 227.
29 M.F. Ashby and J.D. Embury, Scr. Metall. 19 (1985) 557.
30 M. Creager and P.C. Paris, Int. J. Fract. Mech. 3 (1967) 247.
[1] 韩卫忠, 卢岩, 张雨衡. 体心立方金属韧脆转变机制研究进展[J]. 金属学报, 2023, 59(3): 335-348.
[2] 韩冬, 张炎杰, 李小武. 短程有序对高层错能Cu-Mn合金拉-拉疲劳变形行为及损伤机制的影响[J]. 金属学报, 2022, 58(9): 1208-1220.
[3] 田妮, 石旭, 刘威, 刘春城, 赵刚, 左良. 预拉伸变形对欠时效7N01铝合金板材疲劳断裂的影响[J]. 金属学报, 2022, 58(6): 760-770.
[4] 郑士建, 闫哲, 孔祥飞, 张瑞丰. 纳米金属层状材料强塑性的界面调控[J]. 金属学报, 2022, 58(6): 709-725.
[5] 高川, 邓运来, 王冯权, 郭晓斌. 蠕变时效对欠时效7075铝合金力学性能的影响[J]. 金属学报, 2022, 58(6): 746-759.
[6] 武晓雷, 朱运田. 异构金属材料及其塑性变形与应变硬化[J]. 金属学报, 2022, 58(11): 1349-1359.
[7] 刘中秋, 李宝宽, 肖丽俊, 干勇. 连铸结晶器内高温熔体多相流模型化研究进展[J]. 金属学报, 2022, 58(10): 1236-1252.
[8] 安旭东, 朱特, 王茜茜, 宋亚敏, 刘进洋, 张鹏, 张钊宽, 万明攀, 曹兴忠. 奥氏体316不锈钢中位错与氢的相互作用机理[J]. 金属学报, 2021, 57(7): 913-920.
[9] 兰亮云, 孔祥伟, 邱春林, 杜林秀. 基于多尺度力学实验的氢脆现象的最新研究进展[J]. 金属学报, 2021, 57(7): 845-859.
[10] 石增敏, 梁静宇, 李箭, 王毛球, 方子帆. 板条马氏体拉伸塑性行为的原位分析[J]. 金属学报, 2021, 57(5): 595-604.
[11] 梁晋洁, 高宁, 李玉红. 体心立方Fe中微裂纹与间隙型位错环相互作用的分子动力学模拟[J]. 金属学报, 2020, 56(9): 1286-1294.
[12] 李美霖, 李赛毅. 金属Mg二阶锥面<c+a>刃位错运动特性的分子动力学模拟[J]. 金属学报, 2020, 56(5): 795-800.
[13] 李亦庄,黄明欣. 基于中子衍射和同步辐射X射线衍射的TWIP钢位错密度计算方法[J]. 金属学报, 2020, 56(4): 487-493.
[14] 许擎栋, 李克俭, 蔡志鹏, 吴瑶. 脉冲磁场对TC4钛合金微观结构的影响及其机理探究[J]. 金属学报, 2019, 55(4): 489-495.
[15] 高钰璧, 丁雨田, 陈建军, 许佳玉, 马元俊, 张东. 挤压态GH3625合金冷变形过程中的组织和织构演变[J]. 金属学报, 2019, 55(4): 547-554.