|
|
连铸结晶器内高温熔体多相流模型化研究进展 |
刘中秋1,2, 李宝宽1( ), 肖丽俊2, 干勇2 |
1.东北大学 冶金学院 沈阳 110819 2.钢铁研究总院 北京 100081 |
|
Modeling Progress of High-Temperature Melt Multiphase Flow in Continuous Casting Mold |
LIU Zhongqiu1,2, LI Baokuan1( ), XIAO Lijun2, GAN Yong2 |
1.School of Metallurgy, Northeastern University, Shenyang 110819, China 2.Central Iron and Steel Research Institute, Beijing 100081, China |
引用本文:
刘中秋, 李宝宽, 肖丽俊, 干勇. 连铸结晶器内高温熔体多相流模型化研究进展[J]. 金属学报, 2022, 58(10): 1236-1252.
Zhongqiu LIU,
Baokuan LI,
Lijun XIAO,
Yong GAN.
Modeling Progress of High-Temperature Melt Multiphase Flow in Continuous Casting Mold[J]. Acta Metall Sin, 2022, 58(10): 1236-1252.
1 |
Li B K, Liu Z Q. Computational Fluid Dynamics in Steelmaking Processes [M]. Beijing: Metallurgical Industry Press, 2016: 1
|
1 |
李宝宽, 刘中秋. 炼钢中的计算流体力学 [M]. 北京: 冶金工业出版社, 2016: 1
|
2 |
Li B K, Okane T, Umeda T. Modeling of molten metal flow in a continuous casting process considering the effects of argon gas injection and static magnetic-field application [J]. Metall. Mater. Trans., 2000, 31B: 1491
|
3 |
Li B K, Okane T, Umeda T. Modeling of biased flow phenomena associated with the effects of static magnetic-field application and argon gas injection in slab continuous casting of steel [J]. Metall. Mater. Trans., 2001, 32B: 1053
|
4 |
Li B K, Tsukihashi F. Numerical estimation of the effect of the magnetic field application on the motion of inclusion in continuous casting of steel [J]. ISIJ Int., 2003, 43: 923
doi: 10.2355/isijinternational.43.923
|
5 |
Li B K, Huo H F, Luan Y J. Effects of magnetic field and argon gas injection on the inclusion motion in flow control mold [J]. Acta Metall. Sin., 2003, 39: 932
|
5 |
李宝宽, 霍慧芳, 栾叶君. 流动控制结晶器内磁场和吹氩对夹杂物粒子群运动的影响 [J]. 金属学报, 2003, 39: 932
|
6 |
Li W B, Wang F, Qi F S, et al. Mathematical model on steel strip-feeding of mold in continuous casting process [J]. Acta Metall. Sin., 2007, 43: 1191
|
6 |
李维彪, 王 芳, 齐凤升 等. 结晶器喂钢带连铸坯凝固过程的数学模拟 [J]. 金属学报, 2007, 43: 1191
|
7 |
Li B K, Dai F Y, Qi F S, et al. Flow field and concentration field of alloying addition in clad steel continuous casting mold using long and short nozzles [J]. Acta Metall. Sin., 2010, 46: 736
doi: 10.3724/SP.J.1037.2010.00736
|
7 |
李宝宽, 代凤羽, 齐凤升 等. 双水口注流连铸复合钢坯结晶器流场和合金元素浓度场研究 [J]. 金属学报, 2010, 46: 736
doi: 10.3724/SP.J.1037.2010.00025
|
8 |
Gan Y, Tang H W, Qiu S T. Function of continuous cast steel in steel production process and brief introduction of modern continuous casting technology [J]. Sci. China, 2008, 38E: 1384
|
8 |
干 勇, 唐红伟, 仇圣桃. 连续铸钢在钢铁生产流程中的作用及现代连铸技术简介 [J]. 中国科学, 2008, 38E: 1384
|
9 |
Liu Z Q, Li B K, Zhang L, et al. Analysis of transient transport and entrapment of particle in continuous casting mold [J]. ISIJ Int., 2014, 54: 2324
doi: 10.2355/isijinternational.54.2324
|
10 |
Liu Z Q, Li B K. Transient motion of inclusion cluster in vertical-bending continuous casting caster considering heat transfer and solidification [J]. Powder Technol., 2016, 287: 315
doi: 10.1016/j.powtec.2015.10.025
|
11 |
Liu Z Q, Li B K. Effect of vertical length on asymmetric flow and inclusion transport in vertical-bending continuous caster [J]. Powder Technol., 2018, 323: 403
doi: 10.1016/j.powtec.2017.10.034
|
12 |
Liu Z Q, Li B K, Wu M H, et al. An experimental benchmark of non-metallic inclusion distribution inside a heavy continuous-casting slab [J]. Metall. Mater. Trans., 2019, 50A: 1370
|
13 |
Miki Y, Takeuchi S. Internal defects of continuous casting slabs caused by asymmetric unbalanced steel flow in mold [J]. ISIJ Int., 2003, 43: 1548
doi: 10.2355/isijinternational.43.1548
|
14 |
Zhang L F, Thomas B G. State of the art in evaluation and control of steel cleanliness [J]. ISIJ Int., 2003, 43: 271
doi: 10.2355/isijinternational.43.271
|
15 |
Zhou Y H, Hu Z Q, Jie W Q. Solidification Technology [M]. Beijing: China Machine Press, 1998: 1
|
15 |
周尧和, 胡壮麒, 介万奇. 凝固技术 [M]. 北京: 机械工业出版社, 1998: 1
|
16 |
Li J, Xia M X, Hu Q D, et al. Solutions in improving homogeneities of heavy ingots [J]. Acta Metall. Sin., 2018, 54: 773
doi: 10.11900/0412.1961.2017.00525
|
16 |
李 军, 夏明许, 胡侨丹 等. 大型铸锭均质化问题及其新解 [J]. 金属学报, 2018, 54: 773
|
17 |
Zhang W W, Ke P, Yang C X, et al. Progress of computability of multi-scale interface problems in gas-liquid two-phase flow [J]. CIESC J, 2014, 65: 4645
|
17 |
张文伟, 柯 鹏, 杨春信 等. 气液两相流界面多尺度问题可计算性研究进展 [J]. 化工学报, 2014, 65: 4645
|
18 |
Zheng S G, Zhu M Y. Study on mechanism of large bubble formation in slab continuous casting mould with argon blowing [J]. Steel Res. Int., 2008, 79: 918
doi: 10.1002/srin.200806221
|
19 |
Wu S Z, Li Z Z. Research of gas-containing ratio and argon bubbles distribution law in ultra-wide slab continuous casting mold [J]. Metal. Int., 2011, 16: 5
|
20 |
Srinivas P S, Singh A, Korath J M, et al. Multiphase vortex flow patterns in slab caster mold: Experimental study [J]. ISIJ Int., 2017, 57: 1553
doi: 10.2355/isijinternational.ISIJINT-2017-062
|
21 |
Srinivas P S, Korath J M, Jana A K. Multiphase vortex flow patterns in slab caster mould: Insights of air vortex interaction and plant data analysis [J]. Can. Metall. Q., 2020, 59: 270
doi: 10.1080/00084433.2020.1732689
|
22 |
Ramos-Banderas A, Morales R D, Sánchez-Pérez R, et al. Dynamics of two-phase downwards flows in submerged entry nozzles and its influence on the two-phase flow in the mold [J]. Int. J. Multiphase Flow, 2005, 31: 643
doi: 10.1016/j.ijmultiphaseflow.2005.01.010
|
23 |
Lee G G, Thomas B G, Kim S H. Effect of refractory properties on initial bubble formation in continuous-casting nozzles [J]. Met. Mater. Int., 2010, 16: 501
doi: 10.1007/s12540-010-0601-y
|
24 |
Cho S M, Thomas B G, Kim S H. Bubble behavior and size distributions in stopper-rod nozzle and mold during continuous casting of steel slabs [J]. ISIJ Int., 2018, 58: 1443
doi: 10.2355/isijinternational.ISIJINT-2018-096
|
25 |
Wu Y D, Liu Z Q, Wang F, et al. Experimental investigation of trajectories, velocities and size distributions of bubbles in a continuous-casting mold [J]. Powder Technol., 2021, 387: 325
doi: 10.1016/j.powtec.2021.04.015
|
26 |
Chen Z H, Wang E G, Zhang X W, et al. Study on the behaviour of bubbles in a continuous casting mold with Ar injection and traveling magnetic field [J]. Acta Metall. Sin., 2012, 48: 951
doi: 10.3724/SP.J.1037.2011.00792
|
26 |
陈芝会, 王恩刚, 张兴武 等. 行波磁场下吹Ar过程中结晶器内气泡行为的研究 [J]. 金属学报, 2012, 48: 951
doi: 10.3724/SP.J.1037.2011.00792
|
27 |
Timmel K, Eckert S, Gerbeth G, et al. Experimental modeling of the continuous casting process of steel using low melting point metal alloys—The LIMMCAST program [J]. ISIJ Int., 2010, 50: 1134
doi: 10.2355/isijinternational.50.1134
|
28 |
Timmel K, Shevchenko N, Röder M, et al. Visualization of liquid metal two-phase flows in a physical model of the continuous casting process of steel [J]. Metall. Mater. Trans., 2015, 46B: 700
|
29 |
Ren Z M, Zhang Z Q, Deng K, et al. Experimental investigation of fluid flow in CC mold with electromagnetic filed [J]. J. Iron Steel Res. Int., 2011, 18(S2): 227
|
30 |
Zhang H H, Wang W L, Zhou D, et al. A study for initial solidification of Sn-Pb alloy during continuous casting: Part I. The development of the technique [J]. Metall. Mater. Trans., 2014, 45B: 1038
|
31 |
Zhou D, Wang W L, Zhang H H, et al. A study for initial solidification of Sn-Pb alloy during continuous casting: Part II. Effects of casting parameters on initial solidification and shell surface [J]. Metall. Mater. Trans., 2014, 45B: 1048
|
32 |
Miyake T, Morishita M, Nakata H, et al. Influence of sulphur content and molten steel flow on entrapment of bubbles to solid/liquid interface [J]. ISIJ Int., 2006, 46: 1817
doi: 10.2355/isijinternational.46.1817
|
33 |
Damen W, Abbel G. Argon bubbles in slabs, a non-homogeneous distribution [J]. Rev. Metall., 1997, 94: 745
doi: 10.1051/metal/199794060745
|
34 |
Naveau P, Visser H H, Galpin J M, et al. An investigation on the mechanism of gas bubbles/inclusions entrapment in the solidified steel shell [A]. 5th European Continuous Casting Conference [C]. Nice, France, June 20-22, 2005
|
35 |
Thomas B G, Yuan Q, Mahmood S, et al. Transport and entrapment of particles in steel continuous casting [J]. Metall. Mater. Trans., 2014, 45B: 22
|
36 |
Cho S M, Thomas B G, Kim S H. Transient two-phase flow in slide-gate nozzle and mold of continuous steel slab casting with and without double-ruler electro-magnetic braking [J]. Metall. Mater. Trans., 2016, 47B: 3080
|
37 |
Pfeiler C, Thomas B G, Wu M, et al. Solidification and particle entrapment during continuous casting of steel [J]. Steel Res. Int., 2008, 79: 599
doi: 10.1002/srin.200806172
|
38 |
Chen W, Zhang L F. Effects of interphase forces on multiphase flow and bubble distribution in continuous casting strands [J]. Metall. Mater. Trans., 2021, 52B: 528
|
39 |
Zhang L F, Wang Y F. Modeling the entrapment of nonmetallic inclusions in steel continuous-casting billets [J]. JOM, 2012, 64: 1063
doi: 10.1007/s11837-012-0421-2
|
40 |
Liu Z Q, Li B K, Jiang M F. Transient asymmetric flow and bubble transport inside a slab continuous-casting mold [J]. Metall. Mater. Trans., 2014, 45B: 675
|
41 |
Liu Z Q, Li Z M, Li B K, et al. Large eddy simulation of transient flow, solidification, and particle transport processes in continuous-casting mold [J]. JOM, 2014, 66: 1184
doi: 10.1007/s11837-014-1010-3
|
42 |
Liu C L, Luo Z G, Zhang T, et al. Mathematical modeling of multi-sized argon gas bubbles motion and its impact on melt flow in continuous casting mold of steel [J]. J. Iron Steel Res. Int., 2014, 21: 403
doi: 10.1016/S1006-706X(14)60062-5
|
43 |
Yin Y B, Zhang J M, Ma H T, et al. Large eddy simulation of transient flow, particle transport, and entrapment in slab mold with double-ruler electromagnetic braking [J]. Steel Res. Int., 2021, 92: 2000582
doi: 10.1002/srin.202000582
|
44 |
Zhang T, Luo Z G, Zhou H, et al. Analysis of two-phase flow and bubbles behavior in a continuous casting mold using a mathematical model considering the interaction of bubbles [J]. ISIJ Int., 2016, 56: 116
doi: 10.2355/isijinternational.ISIJINT-2015-456
|
45 |
Yang H, Vanka S P, Thomas B G. A hybrid Eulerian-Eulerian discrete-phase model of turbulent bubbly flow [J]. J. Fluids Eng., 2018, 140: 101202
doi: 10.1115/1.4039793
|
46 |
Sarkar S, Singh V, Ajmani S K, et al. Effect of argon injection in meniscus flow and turbulence intensity distribution in continuous slab casting mold under the influence of double ruler magnetic field [J]. ISIJ Int., 2018, 58: 68
doi: 10.2355/isijinternational.ISIJINT-2017-448
|
47 |
Bai H, Thomas B G. Turbulent flow of liquid steel and argon bubbles in slide-gate tundish nozzles: Part I. Model development and validation [J]. Metall. Mater. Trans., 2001, 32B: 253
|
48 |
Bai H, Thomas B G. Turbulent flow of liquid steel and argon bubbles in slide-gate tundish nozzles: Part II. Effect of operation conditions and nozzle design [J]. Metall. Mater. Trans., 2001, 32B: 269
|
49 |
Kubo N, Ishii T, Kubota J, et al. Two-phase flow numerical simulation of molten steel and argon gas in a continuous casting mold [J]. ISIJ Int., 2002, 42: 1251
doi: 10.2355/isijinternational.42.1251
|
50 |
Liu Z Q, Li B K. Large-eddy simulation of transient horizontal gas-liquid flow in continuous casting using dynamic subgrid-scale model [J]. Metall. Mater. Trans., 2017, 48B: 1833
|
51 |
Liu Z Q, Li B K, Vakhrushev A, et al. Physical and numerical modeling of exposed slag eye in continuous casting mold using Euler-Euler approach [J]. Steel Res. Int., 2019, 90: 1800117
doi: 10.1002/srin.201800117
|
52 |
Liu Z Q, Sun Z B, Li B K. Modeling of quasi-four-phase flow in continuous casting mold using hybrid Eulerian and Lagrangian approach [J]. Metall. Mater. Trans., 2017, 48B: 1248
|
53 |
Liu Z Q, Li B K, Jiang M F, et al. Euler-Euler-Lagrangian modeling for two-phase flow and particle transport in continuous casting mold [J]. ISIJ Int., 2014, 54: 1314
doi: 10.2355/isijinternational.54.1314
|
54 |
Liu Z Q, Li L M, Qi F S, et al. Population balance modeling of polydispersed bubbly flow in continuous-casting using multiple-size-group approach [J]. Metall. Mater. Trans., 2015, 46B: 406
|
55 |
Liu Z Q, Qi F S, Li B K, et al. Multiple size group modeling of polydispersed bubbly flow in the mold: An analysis of turbulence and interfacial force models [J]. Metall. Mater. Trans., 2015, 46B: 933
|
56 |
Li L M, Liu Z Q, Li B K. Modelling of bubble aggregation, breakage and transport in slab continuous casting mold [J]. J. Iron Steel Res. Int., 2015, 22: 30
|
57 |
Liu Z Q, Qi F S, Li B K, et al. Modeling of bubble behaviors and size distribution in a slab continuous casting mold [J]. Int. J. Multiphase Flow, 2016, 79: 190
doi: 10.1016/j.ijmultiphaseflow.2015.07.009
|
58 |
Wu Y D, Liu Z Q, Li B K, et al. Numerical simulation of multi-size bubbly flow in a continuous casting mold using population balance model [J]. Powder Technol., 2022, 396: 224
doi: 10.1016/j.powtec.2021.10.055
|
59 |
Liu Z Q, Li B K, Qi F S, et al. Population balance modeling of polydispersed bubbly flow in continuous casting using average bubble number density approach [J]. Powder Technol., 2017, 319: 139
doi: 10.1016/j.powtec.2017.06.034
|
60 |
Prince M J, Blanch H W. Bubble coalescence and break-up in air-sparged bubble columns [J]. AIChE J., 1990, 36: 1485
doi: 10.1002/aic.690361004
|
61 |
Luo H A, Svendsen H F. Theoretical model for drop and bubble breakup in turbulent dispersions [J]. AIChE J., 1996, 42: 1225
doi: 10.1002/aic.690420505
|
62 |
Wu Q, Kim S, Ishii M, et al. One-group interfacial area transport in vertical bubbly flow [J]. Int. J. Heat Mass Transfer, 1998, 41: 1103
doi: 10.1016/S0017-9310(97)00167-1
|
63 |
Hibiki T, Ishii M. Two-group interfacial area transport equations at bubbly-to-slug flow transition [J]. Nucl. Eng. Des., 2000, 202: 39
doi: 10.1016/S0029-5493(00)00286-7
|
64 |
Teshima T, Kubota J, Suzuki M, et al. Influence of casting conditions on molten steel flow in continuous casting mold at high speed casting of slabs [J]. Tetsu Hagané, 1993, 79(5): 40
|
64 |
手嶋 俊雄, 久保田 淳, 鈴木 幹雄 等. スラブ高速鋳造時の連鋳鋳型内溶鋼流動におよぼす鋳造条件の影響 [J]. 鉄と鋼, 1993, 79(5): 40
|
65 |
Gupta D, Lahiri A K. Cold model study of the surface profile in a continuous slab casting mold: Effect of second phase [J]. Metall. Mater. Trans., 1994, 27B: 695
|
66 |
Kumar D S, Rajendra T, Sarkar A, et al. Slab quality improvement by controlling mould fluid flow [J]. Ironmaking Steelmaking, 2007, 34: 185
doi: 10.1179/174328107X155330
|
67 |
Zhang L F, Yang S B, Cai K K, et al. Investigation of fluid flow and steel cleanliness in the continuous casting strand [J]. Metall. Mater. Trans., 2007, 38B: 63
|
68 |
Iguchi M, Yoshida J, Shimizu T, et al. Model study on the entrapment of mold powder into molten steel [J]. ISIJ Int., 2000, 40: 685
doi: 10.2355/isijinternational.40.685
|
69 |
Li B K, Li D H. Water model observation and numerical simu-lation of vortexing flow at molten steel surface in continuous casting mold [J]. Acta Metall. Sin., 2002, 38: 315
|
69 |
李宝宽, 李东辉. 连铸结晶器内钢液涡流现象的水模型观察和数值模拟 [J]. 金属学报, 2002, 38: 315
|
70 |
Mills K C, Fox A B. The role of mould fluxes in continuous casting—So simple yet so complex [J]. ISIJ Int., 2003, 43: 1479
doi: 10.2355/isijinternational.43.1479
|
71 |
Zhang S J, Zhu M Y, Zhang Y L, et al. Study on mechanism of entrapment in slab continuous casting mould with high casting speed and argon blowing [J]. Acta Metall. Sin., 2006, 42: 1087
|
71 |
张胜军, 朱苗勇, 张永亮 等. 高拉速吹氩板坯连铸结晶器内的卷渣机理研究 [J]. 金属学报, 2006, 42: 1087
|
72 |
Hibbeler L C, Thomas B G. Mold slag entrainment mechanisms in continuous casting molds [J]. Iron Steel Technol., 2013, 10: 121
|
73 |
Hagemann R, Schwarze R, Heller H P, et al. Model investigations on the stability of the steel-slag interface in continuous-casting process [J]. Metall. Mater. Trans., 2013, 44B: 80
|
74 |
Zhang L, Li Y, Wang Q, et al. Prediction model for steel/slag interfacial instability in continuous casting process [J]. Ironmaking Steelmaking, 2015, 42: 705
doi: 10.1179/1743281215Y.0000000023
|
75 |
Asai S. Fluid flow and mass transfer in a refining process by use of stirring [A]. Proceedings of the 100 and 101 Nishiyama Memorial Lecture [C]. Tokyo: The Iron and Steel Institute of Japan, 1984: 65
|
76 |
Harman J M, Cramb A W. A study of the effect of fluid physical properties upon droplet emulsification [A]. 79th Steelmaking Conference [C]. Pittsburgh, PA: The Iron and Steel Society, 1996, 55: 773
|
77 |
Tozawa H, Idogawa A, Nakato H, et al. Investigation of periodical change of molten steel flow and entrainment of mold powder in continuous casting mold [J]. CAMP-ISIJ, 1996, 9: 604
|
77 |
戸沢宏一, 井戸川聡, 中戸参 等. 連鋳鋳型内における溶鋼流動の周期的変動とパウダ巻き込み挙動の解析 [J]. 材料とプロセス (日本鉄鋼協会講演論文集), 1996, 9: 604
|
78 |
Liu Z Q, Qi F S, Li B K, et al. Vortex flow pattern in a slab continuous casting mold with argon gas injection [J]. J. Iron Steel Res. Int., 2014, 21: 1081
doi: 10.1016/S1006-706X(14)60187-4
|
79 |
Bai H, Thomas B G. Effects of clogging, argon injection, and continuous casting conditions on flow and air aspiration in submerged entry nozzles [J]. Metall. Mater. Trans., 2001, 32B: 707
|
80 |
Li B K, Tsukihashi F. Vortexing flow patterns in a water model of slab continuous casting mold [J]. ISIJ Int., 2005, 45: 30
doi: 10.2355/isijinternational.45.30
|
81 |
Li B K, Tsukihashi F. Effects of electromagnetic brake on vortex flows in thin slab continuous casting mold [J]. ISIJ Int., 2006, 46: 1833
doi: 10.2355/isijinternational.46.1833
|
82 |
Mahmood S. Efficient modeling of flow asymmetries and particle entrapment in nozzle and mold during continuous casting of steel slabs [D]. Urbana: University of Illinois at Urbana-Champaign, 2006
|
83 |
Zhang L F, Wang Y F, Zuo X J. Flow transport and inclusion motion in steel continuous-casting mold under submerged entry nozzle clogging condition [J]. Metall. Mater. Trans., 2008, 39B: 534
|
84 |
Lee G G, Shin H J, Thomas B G, et al. Asymmetric multi-phase fluid flow and particle entrapment in a continuous casting mold [A]. AISTech 2008 [C]. Pittsburgh: AISTech, 2008: 63
|
85 |
Cho S M, Lee G G, Kim S H, et al. Effect of stopper-rod misalignment on asymmetric flow and vortex formation in steel slab casting [A]. Proceedings of Jim Evans Honorary Symposium-Held During TMS 2010 Annual Meeting and Exhibition [C]. Washington, February 14- 18, 2010: 71
|
86 |
Chaudhary R, Lee G G, Thomas B G, et al. Effect of stopper-rod misalignment on fluid flow in continuous casting of steel [J]. Metall. Mater. Trans., 2011, 42B: 300
|
87 |
Yamashita S, Iguchi M. Mechanism of mold powder entrapment caused by large argon bubble in continuous casting mold [J]. ISIJ Int., 2001, 41: 1529
doi: 10.2355/isijinternational.41.1529
|
88 |
Iguchi M, Sumida Y, Okada R, et al. Evaluation of critical gas flow rate for the entrapment of slag using a water model [J]. ISIJ Int., 1994, 34: 164
doi: 10.2355/isijinternational.34.164
|
89 |
Chung Y, Cramb A W. Dynamic and equilibrium interfacial phenomena in liquid steel-slag systems [J]. Metall. Mater. Trans., 2000, 31B: 957
|
90 |
Han Z J, Holappa L. Bubble bursting phenomenon in gas/metal/slag systems [J]. Metall. Mater. Trans., 2003, 34B: 525
|
91 |
Emling W H, Waugaman T A, Feldbauer S L, et al. Subsurface mold slag entrainment in ultra low carbon steels [A]. 77th Steelmaking Conference [C]. Chicago, IL: The Iron and Steel Society, 1994, 77: 371
|
92 |
Wang Z, Mukai K, Ma Z Y, et al. Influence of injected Ar gas on the involvement of the mold powder under different wettabilities between porous refractory and molten steel [J]. ISIJ Int., 1999, 39: 795
doi: 10.2355/isijinternational.39.795
|
93 |
Hahn I, Neuschütz D. Ejection of steel and slag droplets from gas stirred steel melts [J]. Ironmaking Steelmaking, 2002, 29: 219
doi: 10.1179/030192302225004115
|
94 |
Yoshida J, Iguchi M, Yokoya S. Water model experiment on mold powder entrapment around the exit of immersion nozzle in continuous casting mold [J]. Tetsu Hagané, 2001, 87: 9
|
94 |
吉田 仁, 井口 学, 横谷 真一郎. 連続鋳造モールド内浸漬ノズル吐出口近傍におけるモールドパウダー巻き込みに関する水モデル実験 [J]. 鉄と鋼, 2001, 87: 9
|
95 |
Yuan Z F, Huang W L, Mukai K. Local corrosion of magnesia-chrome refractories driven by Marangoni convection at the slag-metal interface [J]. J. Colloid Interface Sci., 2002, 253: 211
doi: 10.1006/jcis.2002.8504
|
96 |
Zhou L J, Wang W L, Liu R, et al. Computational modeling of temperature, flow, and crystallization of mold slag during double hot thermocouple technique experiments [J]. Metall. Mater. Trans., 2013, 44B: 1264
|
97 |
Real-Ramirez C A, Gonzalez-Trejo J I. Analysis of three-dimensional vortexes below the free surface in a continuous casting mold [J]. Int. J. Miner. Metall. Mater., 2011, 18: 397
doi: 10.1007/s12613-011-0453-6
|
98 |
Lopez P E R, Jalali P N, Björkvall J, et al. Recent developments of a numerical model for continuous casting of steel: Model theory, setup and comparison to physical modelling with liquid metal [J]. ISIJ Int., 2014, 54: 342
doi: 10.2355/isijinternational.54.342
|
99 |
Zhao P, Li Q, Kuang S B, et al. Mathematical modeling of liquid slag layer fluctuation and slag droplets entrainment in a continuous casting mold based on VOF-LES method [J]. High Temp. Mater. Processes, 2017, 36: 551
doi: 10.1515/htmp-2016-0143
|
100 |
Li X L, Li B K, Liu Z Q, et al. Large eddy simulation of electromagnetic three-phase flow in a round bloom considering solidified shell [J]. Steel Res. Int., 2019, 90: 1800133
doi: 10.1002/srin.201800133
|
101 |
Wang Y, Yang S F, Wang F, et al. Optimization on reducing slag entrapment in 150 × 1270 mm slab continuous casting mold [J]. Materials, 2019, 12: 1774
doi: 10.3390/ma12111774
|
102 |
Deng A Y, Xu L, Wang E G, et al. Numerical analysis of fluctuation behavior of steel/slag interface in continuous casting mold with static magnetic field [J]. J. Iron Steel Res. Int., 2014, 21: 809
doi: 10.1016/S1006-706X(14)60146-1
|
103 |
Jowsa J, Bielnicki M, Cwudziński A. Numerical modelling of metal/flux interface in a continuous casting mould [J]. Arch. Metall. Mater., 2015, 60: 2905
doi: 10.1515/amm-2015-0464
|
104 |
Zhao P, Zhou L H. Mathematical modelling of slag entrainment and entrained droplets in a continuous casting mould [J]. Ironmaking Steelmaking, 2019, 46: 886
doi: 10.1080/03019233.2019.1604613
|
105 |
Chen W, Zhang L F, Ren Q, et al. Large eddy simulation on four-phase flow and slag entrainment in the slab continuous casting mold [J]. Metall. Mater. Trans., 2022, 53B: 1446
|
106 |
Li L M, Li B K, Liu Z Q. Modeling of gas-steel-slag three-phase flow in ladle metallurgy: Part II. Multi-scale mathematical model [J]. ISIJ Int., 2017, 57: 1980
doi: 10.2355/isijinternational.ISIJINT-2017-069
|
107 |
Li X L, Li B K, Liu Z Q, et al. Large eddy simulation of multi-phase flow and slag entrapment in a continuous casting mold [J]. Metals, 2019, 9: 7
doi: 10.3390/met9010007
|
108 |
Li X L, Li B K, Liu Z Q, et al. Evaluation of slag entrapment in continuous casting mold based on the LES-VOF-DPM coupled model [J]. Metall. Mater. Trans., 2021, 52B: 3246
|
109 |
Sun M J, Li B K, Liu Z Q, et al. Experimental and numerical investigations on transient multiscale bubble behaviors in CuSO4 aqueous solution electrolysis cell [J]. Chem. Eng. J., 2022, 428: 131182
doi: 10.1016/j.cej.2021.131182
|
110 |
Tsukamoto K, Abe T, Sunagawa I. In situ observation of crystals growing in high temperature melts or solutions [J]. J. Cryst. Growth, 1983, 63: 215
doi: 10.1016/0022-0248(83)90452-9
|
111 |
Jie W Q, Zhou Y H. Modeling study of convection and constitution variation in ingot during solidification [J]. Acta Metall. Sin., 1988, 24: 457
|
111 |
介万奇, 周尧和. 铸锭凝固过程中的对流及液相区成分变化的模拟实验研究 [J]. 金属学报, 1988, 24: 457
|
112 |
Beckermann C, Viskanta R. Double-diffusive convection during dendritic solidification of a binary mixture [J]. PhysicoChem. Hydrodyn., 1988, 10: 195
|
113 |
Chen C F, Chen F L. Experimental study of directional solidification of aqueous ammonium chloride solution [J]. J. Fluid Mech., 1991, 227: 567
doi: 10.1017/S0022112091000253
|
114 |
Cao W Z, Poulikakos D. Transient solidification of a binary mixture in an inclined rectangular cavity [J]. J. Thermophys. Heat Transf., 1992, 6: 326
doi: 10.2514/3.363
|
115 |
Neilson D G, Incropera F P. Experimental study of unidirectional solidification of aqueous ammonium chloride in a cylindrical mold with and without rotation [J]. Exp. Heat Transfer, 1993, 6: 131
doi: 10.1080/08916159308946450
|
116 |
McCay M H, McCay T D, Hopkins J A. The nature and influence of convection on the directional dendritic solidification of a metal alloy analog, NH4Cl, and H2O [J]. Metall. Mater. Trans., 1993, 24B: 669
|
117 |
Beckermann C, Wang C Y. Equiaxed dendritic solidification with convection: Part III. Comparisons with NH4Cl-H2O experiments [J]. Metall. Mater. Trans., 1996, 27A: 2784
|
118 |
Wang S Y, Lin C X, Ebadian M A. Vortex flow of low concentration NH4Cl-H2O solution during the solidification process [J]. Int. J. Heat Mass Transfer, 1999, 42: 4153
doi: 10.1016/S0017-9310(99)00068-X
|
119 |
Wang S Y, Lin C X, Ebadian M A. Study of double-diffusive velocity during the solidification process using particle image velocimetry [J]. Int. J. Heat Mass Transfer, 1999, 42: 4427
doi: 10.1016/S0017-9310(99)00114-3
|
120 |
Duggirala R K, Lin C X, Ghenai C. Investigation of double-diffusive convection during the solidification of a binary mixture (NH4Cl-H2O) in a trapezoidal cavity [J]. Exp. Fluids, 2006, 40: 918
doi: 10.1007/s00348-006-0128-7
|
121 |
Huang W D, Zhang Y, Wang M, et al. In-situ observation of nucleation on a rough chilling surface in NH4Cl-H2O solution [J]. Trans. Indian Inst. Met., 2009, 62: 489
doi: 10.1007/s12666-009-0086-x
|
122 |
Kharicha A, Stefan-Kharicha M, Ludwig A, et al. Simultaneous observation of melt flow and motion of equiaxed crystals during solidification using a dual phase particle image velocimetry technique. Part II: Relative velocities [J]. Metall. Mater. Trans., 2013, 44A: 661
|
123 |
Zhou P, Wang M, Lin X, et al. Settling velocity of equiaxed dendrites in a tube [J]. Chin. Phys., 2013, 22B: 018101
|
124 |
Kharicha M S, Eck S, Könözsy L, et al. Experimental and numerical investigations of NH4Cl solidification in a mould Part 1: Experimental results [J]. Int. J. Cast Met. Res., 2009, 22: 168
doi: 10.1179/136404609X368000
|
125 |
Könözsy L, Eck S, Kharicha M S, et al. Experimental and numerical investigations of NH4Cl solidification in a mould Part 2: Numerical results [J]. Int. J. Cast Met. Res., 2013, 22: 172
doi: 10.1179/136404609X367605
|
126 |
Tian L, Bao Y P, Yang J T, et al. Characteristics of flow field during continuous casting solidifying process [J]. Iron Steel, 2013, 48(10): 36
|
126 |
田 陆, 包燕平, 杨建桃 等. 连铸凝固过程中的流动特征 [J]. 钢铁, 2013, 48(10): 36
|
127 |
Li X, Fautrelle Y, Ren Z M. Influence of thermoelectric effects on the solid-liquid interface shape and cellular morphology in the mushy zone during the directional solidification of Al-Cu alloys under a magnetic field [J]. Acta Mater., 2007, 55: 3803
doi: 10.1016/j.actamat.2007.02.031
|
128 |
Niu R, Li B K, Liu Z Q, et al. Experimental investigation of solidification in the cast mold with a consumable cooler introduced inside [J]. Metals, 2019, 9: 55
doi: 10.3390/met9010055
|
129 |
Liu Z Q, Niu R, Wu Y D, et al. Physical and numerical simulation of mixed columnar-equiaxed solidification during cold strip feeding in continuous casting [J]. Int. J. Heat Mass Transfer, 2021, 173: 121237
doi: 10.1016/j.ijheatmasstransfer.2021.121237
|
130 |
Flemings M C, Nereo G E. Macrosegregation: Part I [J]. Trans. Metall. Soc. AIME, 1967, 239: 1449
|
131 |
Bennon W D, Incropera F P. A continuum model for momentum, heat and species transport in binary solid-liquid phase change systems—I. Model formulation [J]. Int. J. Heat Mass Transfer, 1987, 30: 2161
doi: 10.1016/0017-9310(87)90094-9
|
132 |
Li L M, Liu Z Q, Li B K. Fluid flow and solute transport in the solidifying process of large steel ingots with top heating [A]. Proceedings of International Symposium on Liquid Metal Processing and Casting [C]. Leoben, Austria: The Minerals, Metals, and Materials Society, 2015
|
133 |
Ni J, Beckermann C. A volume-averaged two-phase model for transport phenomena during solidification [J]. Metall. Mater. Trans., 1991, 22B: 349
|
134 |
Li W S, Shen H F, Liu B C. Numerical simulation of macrosegregation in steel ingots using a two-phase model [J]. Int. J. Miner., Metall. Mater., 2012, 19: 787
|
135 |
Wu M H, Ludwig A. A three-phase model for mixed columnar-equiaxed solidification [J]. Metall. Mater. Trans., 2006, 37A: 1613
|
136 |
Wu M, Fjeld A, Ludwig A. Modelling mixed columnar-equiaxed solidification with melt convection and grain sedimentation-Part I: Model description [J]. Comput. Mater. Sci., 2010, 50: 32
doi: 10.1016/j.commatsci.2010.07.005
|
137 |
Zhu M F, Hong C P, Stefanescu D M, et al. Computational modeling of microstructure evolution in solidification of aluminum alloys [J]. Metall. Mater. Trans., 2007, 38B: 517
|
138 |
Yin H, Felicelli S D, Wang L. Simulation of a dendritic microstructure with the lattice Boltzmann and cellular automaton methods [J]. Acta Mater., 2011, 59: 3124
doi: 10.1016/j.actamat.2011.01.052
|
139 |
Chen R, Xu Q Y, Liu B C. A modified cellular automaton model for the quantitative prediction of equiaxed and columnar dendritic growth [J]. J. Mater. Sci. Technol., 2014, 30: 1311
doi: 10.1016/j.jmst.2014.06.006
|
140 |
Li B K, Wang Q, Wang F, et al. A coupled cellular automaton-finite-element mathematical model for the multiscale phenomena of electroslag remelting H13 die steel ingot [J]. JOM, 2014, 66: 1153
doi: 10.1007/s11837-014-0979-y
|
141 |
Wang Q, Yan H G, Wang F, et al. Impact of electromagnetic stirring on grain structure of electroslag remelting ingot [J]. JOM, 2015, 67: 1821
doi: 10.1007/s11837-015-1479-4
|
142 |
Niu R, Li B K, Liu Z Q, et al. Melting of moving strip during steel strip feeding in continuous casting process [J]. Steel Res. Int., 2018, 89: 1700407
doi: 10.1002/srin.201700407
|
143 |
Niu R, Li B K, Liu Z Q, et al. Effect of strip feeding into mold on fluid flow and heat transfer in continuous casting process [J]. J. Iron Steel Res. Int., 2020, 27: 295
doi: 10.1007/s42243-019-00341-8
|
144 |
Thomas B G, Mika L J, Najjar F M. Simulation of fluid flow inside a continuous slab-casting machine [J]. Metall. Mater. Trans., 1990, 21B: 387
|
145 |
Anagnostopoulos J, Bergeles G. Three-dimensional modeling of the flow and the interface surface in a continuous casting mold model [J]. Metall. Mater. Trans., 1999, 30B: 1095
|
146 |
Li B K, Tsukihashi F. Effect of static magnetic field application on the mass transfer in sequence slab continuous casting process [J]. ISIJ Int., 2001, 41: 844
doi: 10.2355/isijinternational.41.844
|
147 |
Kwon Y, Zhang J, Lee H G. Water model and CFD studies of bubble dispersion and inclusions removal in continuous casting mold of steel [J]. ISIJ Int., 2006, 46: 257
doi: 10.2355/isijinternational.46.257
|
148 |
Li B K, Gu M Y, Qi F S, et al. Modeling of three-phase (gas/molten steel/slag) flows and slag layer behavior in an argon gas stirred ladle [J]. Acta Metall. Sin., 2008, 44: 1198
|
148 |
李宝宽, 顾明言, 齐凤升 等. 底吹钢包内气/钢液/渣三相流模型及渣层行为的研究 [J]. 金属学报, 2008, 44: 1198
|
149 |
Chaudhary R, Ji C, Thomas B G, et al. Transient turbulent flow in a liquid-metal model of continuous casting, including comparison of six different methods [J]. Metall. Mater. Trans., 2011, 42B: 987
|
150 |
Zhang X W, Jin X L, Wang Y, et al. Comparison of standard k-ε model and RSM on three dimensional turbulent flow in the SEN of slab continuous caster controlled by slide gate [J]. ISIJ Int., 2011, 51: 581
doi: 10.2355/isijinternational.51.581
|
151 |
Ren B Z, Chen D F, Wang H D, et al. Numerical simulation of fluid flow and solidification in bloom continuous casting mould with electromagnetic stirring [J]. Ironmaking Steelmaking, 2015, 42: 401
doi: 10.1179/1743281214Y.0000000240
|
152 |
Liu Z Q, Li B K, Tsukihashi F. Instability and periodicity of asymmetrical flow in a funnel thin slab continuous casting mold [J]. ISIJ Int., 2015, 55: 805
doi: 10.2355/isijinternational.55.805
|
153 |
Li B K, Liu Z Q, Qi F S, et al. Large eddy simulation for unsteady turbulent flow in thin slab continuous casting mold [J]. Acta Metall. Sin., 2012, 48: 23
doi: 10.3724/SP.J.1037.2011.00464
|
153 |
李宝宽, 刘中秋, 齐凤升 等. 薄板坯连铸结晶器非稳态湍流大涡模拟研究 [J]. 金属学报, 2012, 48: 23
doi: 10.3724/SP.J.1037.2011.00464
|
154 |
Liu Z Q, Qi F S, Li B K, et al. Large eddy simulation for unsteady turbulent field in thin slab continuous casting mold [J]. J. Iron Steel Res. Int., 2011, 18: 243
|
155 |
Liu Z Q, Li L M, Li B K. Large eddy simulation of transient flow and inclusions transport in continuous casting mold under different electromagnetic brakes [J]. JOM, 2016, 68: 2180
doi: 10.1007/s11837-016-1988-9
|
156 |
Liu Z Q, Vakhrushev A, Wu M H, et al. Effect of an electrically-conducting wall on transient magnetohydrodynamic flow in a continuous-casting mold with an electromagnetic brake [J]. Metals, 2018, 8: 609
doi: 10.3390/met8080609
|
157 |
Zhu M Y, Lou W T, Wang W L. Research progress of numerical simulation in steelmaking and continuous casting processes [J]. Acta Metall. Sin., 2018, 54: 131
|
157 |
朱苗勇, 娄文涛, 王卫领. 炼钢与连铸过程数值模拟研究进展 [J]. 金属学报, 2018, 54: 131
|
158 |
Wang Q, He M, Zhu X W, et al. Study and development on numerical simulation for application of electromagnetic field technology in metallurgical processes [J]. Acta Metall. Sin., 2018, 54: 228
|
158 |
王 强, 何 明, 朱晓伟 等. 电磁场技术在冶金领域应用的数值模拟研究进展 [J]. 金属学报, 2018, 54: 228
|
159 |
Wang B, Shen S Y, Ruan Y W, et al. Simulation of gas-liquid two-phase flow in metallurgical process [J]. Acta Metall. Sin., 2020, 56: 619
|
159 |
王 波, 沈诗怡, 阮琰炜 等. 冶金过程中的气液两相流模拟 [J]. 金属学报, 2020, 56: 619
|
160 |
Liu Z Q, Li B K, Jiang M F, et al. Large eddy simulation of unsteady argon/steel two phase turbulent flow in a continuous casting mold [J]. Acta Metall. Sin., 2013, 49: 513
doi: 10.3724/SP.J.1037.2012.00760
|
160 |
刘中秋, 李宝宽, 姜茂发 等. 连铸结晶器内氩气/钢液两相非稳态湍流特性的大涡模拟研究 [J]. 金属学报, 2013, 49: 513
doi: 10.3724/SP.J.1037.2012.00760
|
161 |
Liu Z Q, Li B K, Jiang M F, et al. Modeling of transient two-phase flow in a continuous casting mold using Euler-Euler large eddy simulation scheme [J]. ISIJ Int., 2013, 53: 484
doi: 10.2355/isijinternational.53.484
|
162 |
Liu Z Q, Li B K. Scale-adaptive analysis of Euler-Euler large eddy simulation for laboratory scale dispersed bubbly flows [J]. Chem. Eng. J., 2018, 338: 465
doi: 10.1016/j.cej.2018.01.051
|
163 |
Liu Z Q, Vakhrushev A, Wu M H, et al. Scale-adaptive simulation of transient two-phase flow in continuous-casting mold [J]. Metall. Mater. Trans., 2019, 50B: 543
|
164 |
Liu Z Q, Wu Y D, Li B K, et al. An assessment on the performance of sub-grid scale models of large eddy simulation in modeling bubbly flows [J]. Powder Technol., 2020, 374: 470
doi: 10.1016/j.powtec.2020.07.055
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|