Please wait a minute...
金属学报  1996, Vol. 32 Issue (1): 39-45    
  论文 本期目录 | 过刊浏览 |
310奥氏体不锈钢应力腐蚀的透射电镜原位观察
黄一中;陈奇志;褚武扬
北京科技大学
IN SITU TEM OBSERVATION OF SCC IN 310 STAINLESS STEEL
HUANG Yizhong; CHEN Qizhi; CHU Wuyang (University of Science and Technology Beijing; Beijing 100083)(Manuscript received 1995-03-28; in revised form 1995-07-03)
引用本文:

黄一中;陈奇志;褚武扬. 310奥氏体不锈钢应力腐蚀的透射电镜原位观察[J]. 金属学报, 1996, 32(1): 39-45.
, , . IN SITU TEM OBSERVATION OF SCC IN 310 STAINLESS STEEL[J]. Acta Metall Sin, 1996, 32(1): 39-45.

全文: PDF(595 KB)  
摘要: 用自制的恒位移加载台,在透射电镜中原位观察310奥氏体不锈钢在纯水中局部溶解前后裂尖位错组态的变化以及微裂纹的形核和扩展.结果表明,310奥氏体不锈钢在室温纯水中局部阳极溶解能促进位错发射、增殖和运动,在低应力下,纳米级微裂纹在无位错区中连续或不连续形核,由于介质的作用,纳米级微裂纹并不钝化成空洞或缺口,而是解理扩展.
关键词 310不锈钢透射电镜位错阳极溶解    
Abstract:The in situ TEM observations of dislocation emission, motion and the initiation of nanocrack in 310 stainless steel in water were carried out. Using a special constant deflection device,the dislocation configuration change ahead of a loaded crack tip before and after anodic dissolution in the the deionized water and the initiation, propagation of nanometre scale stress corrosion cracks have been oberved. The results showed that SCC in thin foil specimen of 310 stainless steel can occur in water.The localized anodic dissolution of 310 stainless steel in water at room temperature facilitated dislocation emission, multipication and motion. A nanocrack initated in the DFZ or at the blunted crack tip in corrosion solution after dislocations emission, multiplication and motion reached critical condition. Because of the influence of the corrosion solution, the nanocrack propagates and forms a cleavage microcrack during stress corrosion instead of blunting into a void as it does during a tension test without solution.Correspondent: HUANG Yizhong,(Department of Materials Physics, University of Science and Technology Beijing,Beijing 100083)
Key words 310 stainless steel    TEM    dislocation    anodic dissolution
收稿日期: 1996-01-18     
基金资助:国家自然科学基金
1乔利杰,褚武扬,肖纪美.金属学报,1987;23:A2282乔利杰,缪辉俊,褚武扬,肖纪美.中国科学A,1991;12;12183QiaoLJ,ChuWY,HiaoCM.Corrosion,1987;43:4794QiaoLJ,ChuWY,HiaoCM.Corrosion,1988,44:505ChuWY,WangHL,HiaoCM.Corrosion,1984;40:4876褚武扬.氢损伤与滞后断裂.北京:冶金工业出版社,1988:3167SieradzkiK,NewmanRC.PhilMag,1985;51:958GalveleJR.CorrosSci,1987;27:19KanfmanMJ,FinkJI.ActaMetall.1985;36:221310MagninT,ChieragattiR,OltraR.ActaMetallMater.1990;38:131311JonesDA.MetallTrans.1985;16A:113312黄一中,陈奇志,褚武杨,袁昌言.金属学报,1994;30:B45213OhrSM.MaterSciEng,1985;72:114陈奇志,褚武扬,肖纪美.中国科学,1994;A24:291
[1] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] 邵晓宏, 彭珍珍, 靳千千, 马秀良. 镁合金LPSO/SFs结构间{101¯2}孪晶交汇机制的原子尺度研究[J]. 金属学报, 2023, 59(4): 556-566.
[3] 韩卫忠, 卢岩, 张雨衡. 体心立方金属韧脆转变机制研究进展[J]. 金属学报, 2023, 59(3): 335-348.
[4] 韩冬, 张炎杰, 李小武. 短程有序对高层错能Cu-Mn合金拉-拉疲劳变形行为及损伤机制的影响[J]. 金属学报, 2022, 58(9): 1208-1220.
[5] 田妮, 石旭, 刘威, 刘春城, 赵刚, 左良. 预拉伸变形对欠时效7N01铝合金板材疲劳断裂的影响[J]. 金属学报, 2022, 58(6): 760-770.
[6] 高川, 邓运来, 王冯权, 郭晓斌. 蠕变时效对欠时效7075铝合金力学性能的影响[J]. 金属学报, 2022, 58(6): 746-759.
[7] 郑士建, 闫哲, 孔祥飞, 张瑞丰. 纳米金属层状材料强塑性的界面调控[J]. 金属学报, 2022, 58(6): 709-725.
[8] 武晓雷, 朱运田. 异构金属材料及其塑性变形与应变硬化[J]. 金属学报, 2022, 58(11): 1349-1359.
[9] 安旭东, 朱特, 王茜茜, 宋亚敏, 刘进洋, 张鹏, 张钊宽, 万明攀, 曹兴忠. 奥氏体316不锈钢中位错与氢的相互作用机理[J]. 金属学报, 2021, 57(7): 913-920.
[10] 兰亮云, 孔祥伟, 邱春林, 杜林秀. 基于多尺度力学实验的氢脆现象的最新研究进展[J]. 金属学报, 2021, 57(7): 845-859.
[11] 石增敏, 梁静宇, 李箭, 王毛球, 方子帆. 板条马氏体拉伸塑性行为的原位分析[J]. 金属学报, 2021, 57(5): 595-604.
[12] 梁晋洁, 高宁, 李玉红. 体心立方Fe中微裂纹与间隙型位错环相互作用的分子动力学模拟[J]. 金属学报, 2020, 56(9): 1286-1294.
[13] 李美霖, 李赛毅. 金属Mg二阶锥面<c+a>刃位错运动特性的分子动力学模拟[J]. 金属学报, 2020, 56(5): 795-800.
[14] 李亦庄,黄明欣. 基于中子衍射和同步辐射X射线衍射的TWIP钢位错密度计算方法[J]. 金属学报, 2020, 56(4): 487-493.
[15] 高钰璧, 丁雨田, 陈建军, 许佳玉, 马元俊, 张东. 挤压态GH3625合金冷变形过程中的组织和织构演变[J]. 金属学报, 2019, 55(4): 547-554.