Please wait a minute...
金属学报  2018, Vol. 54 Issue (8): 1087-1093    DOI: 10.11900/0412.1961.2017.00415
  本期目录 | 过刊浏览 |
纳米金属腐蚀
吴俊升1, 张博威1,2, 李晓刚1(), 黄一中2()
1 北京科技大学新材料技术研究院腐蚀与防护中心 北京 100083
2 南洋理工大学材料科学与工程学院 新加坡 639798
Corrosion of Nanoscale Metals
Junsheng WU1, Bowei ZHANG1,2, Xiaogang LI1(), Yizhong HUANG2()
1 Corrosion and Protection Center, Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
2 School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
引用本文:

吴俊升, 张博威, 李晓刚, 黄一中. 纳米金属腐蚀[J]. 金属学报, 2018, 54(8): 1087-1093.
Junsheng WU, Bowei ZHANG, Xiaogang LI, Yizhong HUANG. Corrosion of Nanoscale Metals[J]. Acta Metall Sin, 2018, 54(8): 1087-1093.

全文: PDF(3992 KB)   HTML
摘要: 

纳米尺度金属的小尺寸效应、超高比表面积以及表面大量缺陷、悬空化学键等活性反应位,使其具有完全不同于传统块体金属的优异化学反应活性。然而,高反应活性在使得纳米金属在获得特殊性质和功能的同时,其抗氧化、腐蚀等稳定性问题也成为限制其实际应用的主要因素。金属纳米材料在实际应用中绝大部分是在溶液环境下,或处于有液体接触的复杂多相体系中,腐蚀问题不可避免。纳米金属材料在溶液中的腐蚀失效问题是该类材料实现真正大规模实际应用必须要面对和解决的关键问题。但由于其具有低维度和小尺寸等特点,纳米金属的腐蚀研究存在极大的困难,无论是研究实验方法还是理论体系都与传统宏观金属腐蚀体系具有很大的不同。本文系统总结了近年来关于纳米贵金属(Pt、Ag)、纳米过渡金属(Cu、Ni、Fe)、活性纳米金属(Al、Mg)以及纳米半导体金属(Ge)等典型低维纳米金属材料的环境稳定性及腐蚀行为研究进展,并对未来在纳米尺度金属腐蚀研究的理论和实验创新方面进行了分析和展望

关键词 低维纳米金属氧化腐蚀环境稳定性    
Abstract

Beneficial from small-size effect, super-high specific surface area and a large amount of defects and dangling bonds on the surface, nanoscale metals exhibit superior chemical activities than traditional bulky counterparts. Nevertheless, it is the high reaction activities of nanoscale metals that in turn make them vulnerable to be oxidized and corroded, which is a main obstacle in their applications. In liquid solutions or liquid-involving multiphase environment, corrosion on nanoscale metals is ubiquitous so that it remains a crucial issue before nanoscale metals are widely employed in real applications. Due to the low-dimension and small-size of nanoscale metals, it is a huge challenge of studying their corrosion behaviors since the experimental and theoretical methods are significantly different from those on bulky metals. In the present paper, recent studies on environmental stability and corrosion behaviors of nanoscale noble metals (Pt, Ag), transition metals (Cu, Ni, Fe), active metals (Al, Mg) and semi-conductor metal (Ge) have been reviewed. Meanwhile, analysis and expectations of theoretical and experimental innovations have also been stated for the further study the corrosion on nanoscale metals.

Key wordslow-dimension    nanoscale metal    oxidation    corrosion    environmental stability
收稿日期: 2017-09-30     
ZTFLH:  TG146  
基金资助:国家自然科学基金项目Nos.51771027和51271031,国家重点研发计划项目No.2017YFB0702100以及航空科学基金项目No.20165474001
作者简介:

作者简介 吴俊升,男,1976年生,教授,博士

图1  Cu纳米线在40%相对湿度空气中暴露24 h后的微观形貌HRTEM照片和氧化膜生长动力学曲线[17]
图2  Cu纳米线在0.1 mol/L NaOH溶液中表面氧化膜在不同电位下的演变过程[17]
图3  不同粒径纳米Ni颗粒经过高温氧化热处理后的TEM照片[19]
图4  纳米尺度金属Ni在酸性和碱性水溶液中电化学氧化形成钝化膜的HRTEM照片[20]
[1] Sau T K, Rogach A L, Jackel F, et al.Properties and applications of colloidal nonspherical noble metal nanoparticles[J]. Adv. Mater., 2010, 22: 1805
[2] Ferrando R, Jellinek J, Johnston R L.Nanoalloys: From theory to applications of alloy clusters and nanoparticles[J]. Chem. Rev., 2008, 108: 845
[3] Rosei F.Nanostructured surfaces: Challenges and frontiers in nanotechnology[J]. J. Phys.: Condensed Matter, 2004, 16: S1373
[4] Dreizin E L.Metal-based reactive nanomaterials[J]. Prog. Energ. Combust. Sci., 2009, 35: 141
[5] Wang Q L, Lee S, Choi H.Aging study on the structure of Fe0-nanoparticles: Stabilization, characterization, and reactivity[J]. J. Phys. Chem., 2010, 114C: 2027
[6] Perez-Alonso F J, Elkj?r C F, Shim S S, et al. Identical locations transmission electron microscopy study of Pt/C electrocatalyst degradation during oxygen reduction reaction[J]. J. Power Sour., 2011, 196: 6085
[7] Cherevko S, Kulyk N, Mayrhofer K J J. Durability of platinum-based fuel cell electrocatalysts: Dissolution of bulk and nanoscale platinum[J]. Nano Energy, 2016, 29: 275
[8] Tang L, Han B C, Persson K, et al.Electrochemical stability of nanometer-scale Pt particles in acidic environments[J]. J. Am. Chem. Soc., 2010, 132: 596
[9] Tang L, Li X Q, Cammarata R C, et al.Electrochemical stability of elemental metal nanoparticles[J]. J. Am. Chem. Soc., 2010, 132: 1722
[10] Jinnouchi R, Suzuki K K T, Morimoto Y. DFT calculations on electro-oxidations and dissolutions of Pt and Pt-Au nanoparticles[J]. Catal. Today, 2016, 262: 100
[11] Ivanova O S, Zamborini F P.Size-dependent electrochemical oxidation of silver nanoparticles[J]. J. Am. Chem. Soc., 2010, 132: 70
[12] Liu Y, Lopes P P, Cha W, et al.Stability limits and defect dynamics in Ag nanoparticles probed by Bragg coherent diffractive imaging[J]. Nano Lett., 2017, 17: 1595
[13] Keast V J, Myles T A, Shahcheraghi N, et al.Corrosion processes of triangular silver nanoparticles compared to bulk silver[J]. J. Nanopart. Res., 2016, 18: 45
[14] Elechiguerra J L, Larios-Lopez L, Liu C, et al.Corrosion at the nanoscale: The case of silver nanowires and nanoparticles[J]. Chem. Mater., 2005, 17: 6042
[15] Taylor C D, Neurock M, Scully J R.First-principles investigation of the fundamental corrosion properties of a model Cu(38) nanoparticle and the (111), (113) surfaces[J]. J. Electrochem. Soc., 2008, 155: C407
[16] Xia X P, Xie C S, Cai S Z, et al.Corrosion characteristics of copper microparticles and copper nanoparticles in distilled water[J]. Corros. Sci., 2006, 48: 3924
[17] Zhang B W, Chen B S, Wu J S, et al.The electrochemical response of single crystalline copper nanowires to atmospheric air and aqueous solution[J]. Small, 2017, 13: 1603411
[18] D'Addato S, Grillo V, Altieri S, et al. Structure and stability of nickel/nickel oxide core-shell nanoparticles[J]. J. Phys.: Condensed Matter, 2011, 23: 175003
[19] Railsback J G, Johnston-Peck A C, Wang J W, et al. Size-dependent nanoscale Kirkendall effect during the oxidation of nickel nanoparticles[J]. ACS Nano, 2010, 4: 1913
[20] Zhang B W, Wu J S, Li X G, et al.Passivation of nickel nanoneedles in aqueous solutions[J]. J. Phys. Chem. , 2014, 118C: 9073
[21] Sarathy V, Tratnyek P G, Nurmi J T, et al.Aging of iron nanoparticles in aqueous solution: Effects on structure and reactivity[J]. J. Phys. Chem., 2008, 112C: 2286
[22] Reardon E J, Fagan R, Vogan J L, et al.Anaerobic corrosion reaction kinetics of nanosized iron[J]. Environ. Sci. Technol., 2008, 42: 2420
[23] Liu A R, Liu J, Han J H, et al.Evolution of nanoscale zero-valent iron (nZVI) in water: Microscopicand spectroscopic evidence on the formation of nano- andmicro-structured iron oxides[J]. J. Hazard. Mater., 2017, 322: 129
[24] Pullin H, Springell R, Parry S, et al.The effect of aqueous corrosion on the structure and reactivity of zero-valent iron nanoparticles[J]. Chem. Eng. J., 2017, 308: 568
[25] Hedberg Y S, Pradhan S, Cappellini F, et al.Electrochemical surface oxide characteristics of metal nanoparticles (Mn, Cu and Al) and the relation to toxicity[J]. Electrochim. Acta, 2016, 212: 360
[26] Gromov A A, Strokova Y I, Teipel U.Stabilization of metal nanoparticles—A chemical approach[J]. Chem. Eng. Technol., 2009, 32: 1049
[27] Lei J P, Huang H, Dong X L, et al.Oxidation and corrosion behaviors of Mg-based nanoparticles[J]. J. Nanosci. Nanotechnol., 2009, 9: 7503
[28] Hanrath T, Korgel B A.Chemical surface passivation of Ge nanowires[J]. J. Am. Chem. Soc., 2004, 126: 15466
[29] Holmberg V C, Korgel B A.Corrosion resistance of thiol-and alkene-passivated germanium nanowires[J]. Chem. Mater., 2010, 22: 3698
[1] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[2] 张奇亮, 王玉超, 李光达, 李先军, 黄一, 徐云泽. EH36钢在不同粒径沙砾冲击下的冲刷腐蚀耦合损伤行为[J]. 金属学报, 2023, 59(7): 893-904.
[3] 赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
[4] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[5] 李小涵, 曹公望, 郭明晓, 彭云超, 马凯军, 王振尧. 低碳钢Q235、管线钢L415和压力容器钢16MnNi在湛江高湿高辐照海洋工业大气环境下的初期腐蚀行为[J]. 金属学报, 2023, 59(7): 884-892.
[6] 陈润农, 李昭东, 曹燕光, 张启富, 李晓刚. 9%Cr合金钢在含Cl环境中的初期腐蚀行为及局部腐蚀起源[J]. 金属学报, 2023, 59(7): 926-938.
[7] 黄鼎, 乔岩欣, 杨兰兰, 王金龙, 陈明辉, 朱圣龙, 王福会. 基体表面喷丸处理对纳米晶涂层循环氧化行为的影响[J]. 金属学报, 2023, 59(5): 668-678.
[8] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[9] 王京阳, 孙鲁超, 罗颐秀, 田志林, 任孝旻, 张洁. 以抗CMAS腐蚀为目标的稀土硅酸盐环境障涂层高熵化设计与性能提升[J]. 金属学报, 2023, 59(4): 523-536.
[10] 韩恩厚, 王俭秋. 表面状态对核电关键材料腐蚀和应力腐蚀的影响[J]. 金属学报, 2023, 59(4): 513-522.
[11] 刘来娣, 丁彪, 任维丽, 钟云波, 王晖, 王秋良. DZ445镍基高温合金高温长时间氧化形成的多层膜结构[J]. 金属学报, 2023, 59(3): 387-398.
[12] 沈朝, 王志鹏, 胡波, 李德江, 曾小勤, 丁文江. 镁合金抗高温氧化机理研究进展[J]. 金属学报, 2023, 59(3): 371-386.
[13] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[14] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[15] 廖京京, 张伟, 张君松, 吴军, 杨忠波, 彭倩, 邱绍宇. Zr-Sn-Nb-Fe-V合金在过热蒸汽中的周期性钝化-转折行为[J]. 金属学报, 2023, 59(2): 289-296.