Please wait a minute...
金属学报  2014, Vol. 50 Issue (6): 667-673    DOI: 10.3724/SP.J.1037.2013.00799
  本期目录 | 过刊浏览 |
拉拔过程中珠光体钢丝心部的织构演化规律及其对力学性能的影响*
赵天章1, 宋鸿武1, 张光亮2, 程明1, 张士宏1()
1 中国科学院金属研究所, 沈阳 110016
2 台州学院, 台州 318000
THE TEXTURE EVOLUTION AT THE CENTER OF PEARLITIC STEEL WIRE DURING DRAWING AND ITS INFLUENCE ON THE MECHANICAL PROPERTIES
ZHAO Tianzhang1, SONG Hongwu1, ZHANG Guangliang2, CHENG Ming1, ZHANG Shihong1()
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2 Taizhou University, Taizhou 318000
引用本文:

赵天章, 宋鸿武, 张光亮, 程明, 张士宏. 拉拔过程中珠光体钢丝心部的织构演化规律及其对力学性能的影响*[J]. 金属学报, 2014, 50(6): 667-673.
Tianzhang ZHAO, Hongwu SONG, Guangliang ZHANG, Ming CHENG, Shihong ZHANG. THE TEXTURE EVOLUTION AT THE CENTER OF PEARLITIC STEEL WIRE DURING DRAWING AND ITS INFLUENCE ON THE MECHANICAL PROPERTIES[J]. Acta Metall Sin, 2014, 50(6): 667-673.

全文: PDF(2461 KB)   HTML
摘要: 

采用电子背散射衍射(EBSD)技术研究了拉拔过程中珠光体钢丝心部织构演变规律. 结果表明, 经过多道次干拉和淬火处理的钢丝存在强度较小的<110>丝织构, 经过湿拉拔后, <110>丝织构强度明显增加. 应用黏塑性自洽模型(VPSC), 建立了拉拔过程中钢丝心部织构计算模型, 预测了织构的演化规律, 并用虚拟的单向拉伸实验研究了初始织构对力学行为的影响. 预测结果与EBSD测试结果相符, 随着拉拔应变的增加, 晶粒的<110>取向逐渐转向拉拔方向. 在拉拔方向上的反极图中, 存在<113>和<012>连线上稳定的取向, 靠近<001>和<111>连线上的取向先转向到稳定取向再转向<110>取向, 其它取向直接转向<110>取向. 随着拉拔应变增加<110>丝织构的体积分数逐渐增加, 增加速率逐渐减小. 随着初始<110>丝织构体积分数的增加钢丝心部的屈服应力逐渐增加.

关键词 珠光体钢丝晶体学织构黏塑性自洽模型力学性能    
Abstract

The cold drawing pearlitic steel wires are widely used in industry such as the automobile tire and ropes. And it possesses an ultra high strength, almost the highest in all the steel products. So many investigations are focused on the hardening mechanisms of pearlitic steel wire during cold drawing, including the microstructure fining, texture evolution and cementite dissolution. In this study, the electron backscatter diffraction (EBSD) and the visco-plastic self-consistent (VPSC) model are used to investigate the texture evolution law at the center of wire during the drawing, as well as its influences on the mechanical behaviors. The EBSD results show that the as-received wires after dry drawing and quenching have a little <110> fiber texture along the drawing direction. And with wet drawing strain increasing, the intense of <110> fiber texture increases apparently. The calculations using VPSC have a good agreement with the EBSD results, which indicate that VPSC can successfully predict the texture category and its evolution law in pearlitic steel wire during drawing. The predictions show that the <110> fiber texture is gradually generated at the center of wire with strain increasing and exhibit the path of individual orientation in the inverse pole figures during the drawing. The orientations at the line linking <113> and <012> seem stable. The orientations located at the line linking <001> and <111> prefer to turn to the stable orientations and then turn to <110>. The other orientations turn to <110> directly. The volume of <110> orientations within 15 degrees of drawing direction increases with strain increasing and get saturation finally. The tensile yield stress of the wire center increases with the initial volume of <110> fiber texture increasing.

Key wordspearlitic steel wire    crystallographic texture    visco-plastic self-consistent model    mechanical property
收稿日期: 2013-12-09     
ZTFLH:  TG111  
基金资助:* 贝卡尔特(亚洲)研发中心合作项目, 国家自然科学基金项目51034009和广东省中国科学院全面战略合作项目2012B091100251资助
作者简介: null

赵天章, 男, 1987年生, 博士生

图1  EBSD测试位置的示意图和初始坯料的实际测试区域
Condition Diameter / mm Area reduction / % Strain
As-received 0.82 - -
3 passes 0.61 45 0.59
5 passes 0.52 60 0.91
表1  实验用钢丝样品的信息
图2  钢丝的力学曲线与黏塑性自洽(VPSC)模型中的拟合曲线
图3  经不同道次拉拔前后钢丝心部沿拉拔方向的反极图
图4  VPSC预测的不同等效应变下沿着拉拔方向的反极图和取向的运动路径
图5  拉拔方向&lt;110&gt;丝织构体积分数及其增长速率随应变的演变规律
图6  &lt;110&gt;丝织构对钢丝力学性能的影响
[1] Li Y J, Choi P, Goto S, Borchers C, Raabe D, Kirchheim R. Acta Mater, 2012; 60: 4005
[2] Embury J D, Fisher R M. Acta Metall, 1966; 14: 147
[3] Langford G. Metall Mater Trans, 1977; 8A: 861
[4] Dollar M, Bernstein I M, Thompson A W. Acta Metall, 1988; 36: 311
[5] Bae C, Lee C, Nam W. Metall Mater Trans, 2000; 31A: 2665
[6] Zhang X, Godfrey A, Huang X, Hansen N, Liu Q. Acta Mater, 2011; 59: 3422
[7] Zhang X, Godfrey A, Hansen N, Huang X, Liu W, Liu Q. Mater Charact, 2010; 61: 65
[8] Zhang X, Godfrey A, Hansen N, Huang X. Acta Mater, 2013; 61: 4898
[9] Li Y J, Choi P, Borchers C, Westerkamp S, Goto S, Raabe D, Kirchheim R. Acta Mater, 2011; 59: 3965
[10] Atienza J, Elices M. Mater Struct, 2003; 36: 548
[11] Yang F, Jiang J Q, Wang Y, Ma C, Fang F, Zhao K L, Li W. Mater Lett, 2008; 62: 2219
[12] Zelin M. Acta Mater, 2002; 50: 4431
[13] Yang F, Ma C, Jiang J Q, Feng H P, Zhai S Y. Scr Mater, 2008; 59: 850
[14] Liu Y D, Jiang Q W, Zhao X, Zuo L, Liang Z D. Acta Metall Sin, 2002; 38: 1215
[14] (刘沿东, 蒋奇武, 赵 骧, 左 良, 梁志德. 金属学报, 2002; 38: 1215)
[15] Liu Y D, Zhang Y D, Tidu A, Zuo L. J Mater Sci Technol, 2012; 28: 1010
[16] Li S, He S, Van Bael A, Van Houtte P. Mater Sci Forum, 2002; 408-412: 439
[17] Zidani M, Messaoudi S, Baudin T, Solas D, Mathon M. Int J Mater Form, 2010; 3: 7
[18] Zhang X D, Godfrey A, Liu W, Liu Q. Acta Metall Sin, 2010; 46: 141
[18] (张晓丹, Godfrey A, 刘 伟, 刘 庆. 金属学报, 2010; 46: 141)
[19] Taylor G I. J Inst Met, 1938; 62: 307
[20] Molinari A, Canova G R, Ahzi S. Acta Metall, 1987; 35: 2983
[21] Lebensohn R A, Tomé C N. Acta Metall Mater, 1993; 41: 2611
[22] Hua F A, Di H S, Li J P, Liu X H, Wang G D. Acta Metall Sin, 2009; 45: 657
[22] (花福安, 邸洪双, 李建平, 刘相华, 王国栋. 金属学报, 2009; 45: 657)
[23] Li S, Gazder A A, Beyerlein I J, Davies C H J, Pereloma E V. Acta Mater, 2007; 55: 1017
[24] Li S Y. Trans Nonferrous Met Soc China, 2013; 23: 170
[25] Asaro R,Lubarda V. Mechanics of Solids and Materials. New York: Cambridge University Press, 2006: 538
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[6] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[10] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[11] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[12] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[13] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[14] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[15] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.