Please wait a minute...
金属学报  2014, Vol. 50 Issue (7): 863-870    DOI: 10.3724/SP.J.1037.2013.00756
  论文 本期目录 | 过刊浏览 |
喷射态7075合金回归再时效中预时效的研究*
苏睿明, 曲迎东, 李荣德
(沈阳工业大学材料科学与工程学院, 沈阳 110870)
PRE-AGING OF RETROGRESSION AND RE-AGINGOF SPRAY FORMED 7075 ALLOY
SU Ruiming, QU Yingdong, LI Rongde
School of Material Science and Engineering, Shenyang University of Technology, Shenyang 110870
全文: PDF(4248 KB)   HTML
摘要: 

采用拉伸测试、TEM和电导率测试等方法, 研究回归再时效(RRA)处理中预时效处理对喷射成形7075合金组织及性能的影响. 结果表明, 采用120 ℃, 16 h的欠时效预处理比120 ℃, 24 h峰值时效预处理和120 ℃, 32 h过时效预处理更有利于在回归处理过程中合金晶内析出相的回溶, 比120 ℃, 8 h的早期预时效处理更有助于晶界相在再时效处理后断续分布. 120 ℃, 16 h预时效处理的合金经RRA处理后, 其抗拉强度和屈服强度分别为782和726 MPa, 均高于T6峰值时效和常规回归再时效水平; 电导率为22.7 MS/m, 晶界析出相断续分布, 合金抗腐蚀性能优良.

关键词 7075铝合金喷射成形回归再时效预时效析出相    
Abstract:Retrogression and re-aging (RRA) treatments are divided into pre-aging, retrogression and re-aging. Although peak aging was used as the pre-aging of RRA treatment in the past, some different opinions were reported in recent years. The effects of pre-aging of RRA treatment on microstructure, mechanical properties and conductivity of spray formed 7075 aluminum alloy were investigated by TEM, tensile and conductivity test. The results show that the mechanical properties and conductivity of spray formed 7075 alloy could be improved by the under aging at 120 ℃ for 16 h as the pre-aging of RRA treatment. The properties of the 7xxx series aluminum alloys depend on matrix precipitates (MPt), grain boundary precipitates (GBPs) and precipitate free zones (PFZs). The tiny MPt can increase the tensile strength. The connected GBPs and narrow PFZs will lower the conductivity and the elongation of the alloy. The under aging is more beneficial for the re-dissolution of the MPts at retrogression treatment at 200 ℃ for 10 min, and is more conducive to interrupt distributions of the GBPs than the early aging after RRA treatment. With the under aging as the pre-aging treatment, the growth of the MPts was actively suppressed and the GBPs at grain boundaries are continuous. During retrogression treatment, the MPts were re-dissolved absolutely and the GBPs were transformed from a chain to dissociation. After re-aging treatment, lots of tiny dispersive MPts precipitated out again in matrix, the GBPs were totally separated and the PFZ were widened. After pre-aging at 120 ℃ for 16 h and RRA treatment, the tensile strength and yield strength of the alloy are 782 and 726 MPa, respectively, which are higher than that after peak aging treatment or conventional RRA treatment, the conductivity of the 7075 alloy is excellent with 22.7 MS/m.
Key words7075 aluminum alloy    spray forming    retrogression and re-aging    pre-aging    precipitate
收稿日期: 2013-11-23     
ZTFLH:  TG146.2  
基金资助:* 霍英东教育基金项目121054和辽宁省创新团队项目LT2012004资助
Corresponding author: QU Yingding, professor, Tel: (024)25497132, E-mail: quyingdong@163.com   
作者简介: 苏睿明, 男, 1984年生, 博士生

引用本文:

苏睿明, 曲迎东, 李荣德. 喷射态7075合金回归再时效中预时效的研究*[J]. 金属学报, 2014, 50(7): 863-870.
SU Ruiming, QU Yingdong, LI Rongde. PRE-AGING OF RETROGRESSION AND RE-AGINGOF SPRAY FORMED 7075 ALLOY. Acta Metall Sin, 2014, 50(7): 863-870.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2013.00756      或      https://www.ams.org.cn/CN/Y2014/V50/I7/863

[1] Wang Y Q, Wang Y, Chen P M, Shao Y W, Wang F H. Acta Metall Sin, 2011; 47: 455
(王艳秋, 王 岳, 陈派明, 邵亚薇, 王福会. 金属学报, 2011; 47: 455)
[2] Marlaud T, Deschamps A, Bley F, Lefebvrec W, Baroux B. Acta Mater, 2010; 58: 248
[3] Marlaud T, Deschamps A, Bley F, Lefebvrec W, Baroux B. Acta Mater, 2010; 58: 4814
[4] George S L, Knutsen R D. J Mater Sci, 2012; 47: 4716
[5] Su R M, Qu Y D, Li R X, Li R D. Appl Mech Mater, 2012; 217: 1835
[6] Jeyakumar M, Kumar S, Gupta G S. Mater Manuf Proc, 2010; 25: 777
[7] Silva G, Rivolta B, Gerosa R, Derudi U. J Mater Eng Perform, 2013; 22: 210
[8] Ricker R E, Lee E U, Taylor R, Lei C, Pregger B, Lipnickas E. Metall Mater Trans, 2013; 44A: 1353
[9] Ning A L, Liu Z Y, Feng C, Zeng S M. Acta Metall Sin, 2006; 42: 1253
(宁爱林, 刘志义, 冯 春, 曾苏民. 金属学报, 2006; 42: 1253)
[10] Fooladfar H, Hasnemi B, Younesi M. J Mater Eng Perform, 2010; 19: 852
[11] Arnold E M, Schubbe J J, Moran P J, Bayles R A. J Mater Eng Perform, 2012; 21: 2480
[12] Cina B M. US Pat, 3856584, 1974
[13] Li R D, Su R M, Qu Y D. J Mech Eng, 2013; 49(20): 22
(李荣德, 苏睿明, 曲迎东. 机械工程学报, 2013; 49(20): 22)
[14] Su R M, Qu Y D, Li R D, Xie Q M, Wu Y S. Adv Mater Res, 2013; 774: 872
[15] Peng G, Chen K, Chen S, Fang H. Mater Sci Eng, 2011; A528: 4014
[16] Reda Y, Abdel-Karim R, Elmahallawi I. Mater Sci Eng, 2008; A485: 468
[17] Ohnishi T, Ibaraki Y, Ito T. Mater Trans JIM, 1989; 30: 601
[18] Higashi K, Ohnishi T, Tsukuda I. US Pat, 4713216, 1987
[19] Lin J, Kersker M M. US Pat, 5108520, 1992
[20] Han X L, Xiong B Q, Zhang Y A, Zhu B H, Li Z H, Li X W, Wang F, Liu H W. Chin J Nonferrous Met, 2012; 22: 3006
(韩小磊, 熊柏青, 张永安, 朱宝宏, 李志辉, 李锡武, 王 锋, 刘红伟. 中国有色金属学报, 2012; 22: 3006)
[21] Islam M U, Wallace W. Mater Sci Technol, 1983; 10: 386
[22] Wang D, Ni D R, Ma Z Y. Mater Sci Eng, 2008; A494: 360
[23] Li G F, Zhang X M. Chin J Nonferrous Met, 2013; 23: 1234
(李国锋, 张新明. 中国有色金属学报, 2013; 23: 1234)
[24] Jiang H, Faulkner R G. Acta Mater, 1996; 44: 1857
[25] Jiang H, Faulkner R G. Acta Mater, 1996; 44: 1865
[1] 梁孟超, 陈良, 赵国群. 人工时效对2A12铝板力学性能和强化相的影响[J]. 金属学报, 2020, 56(5): 736-744.
[2] 刘振宝,梁剑雄,苏杰,王晓辉,孙永庆,王长军,杨志勇. 高强度不锈钢的研究及发展现状[J]. 金属学报, 2020, 56(4): 549-557.
[3] 张正延,柴锋,罗小兵,陈刚,杨才福,苏航. 调质态含Cu高强钢的强化机理及钢中Cu的析出行为[J]. 金属学报, 2019, 55(6): 783-791.
[4] 杜娟, 程晓行, 杨天南, 陈龙庆, Mompiou Frédéric, 张文征. 奥氏体析出相激发形核的原位TEM研究[J]. 金属学报, 2019, 55(4): 511-520.
[5] 朱上,李志辉,闫丽珍,李锡武,张永安,熊柏青. Zn添加对预时效态Al-Mg-Si-Cu合金自然时效和烘烤硬化性的影响[J]. 金属学报, 2019, 55(11): 1395-1406.
[6] 马国楠, 王东, 刘振宇, 毕胜, 昝宇宁, 肖伯律, 马宗义. 热压烧结温度对SiC/Al-Zn-Mg-Cu复合材料微观结构与力学性能的影响[J]. 金属学报, 2019, 55(10): 1319-1328.
[7] 田甜, 郝志博, 贾崇林, 葛昌纯. 新型第三代粉末高温合金FGH100L的显微组织与力学性能[J]. 金属学报, 2019, 55(10): 1260-1272.
[8] 邵盈恺, 王玉玺, 杨志斌, 史春元. 基于焊缝熔深优化的7075铝合金等离子-MIG复合焊接热裂纹敏感性[J]. 金属学报, 2018, 54(4): 547-556.
[9] 胡国栋, 王培, 李殿中, 李依依. 新型25Cr-20Ni奥氏体耐热不锈钢750 ℃持久实验过程中析出相演变[J]. 金属学报, 2018, 54(11): 1705-1714.
[10] 冯迪, 张新明, 陈洪美, 金云学, 王国迎. 非等温回归再时效对Al-8Zn-2Mg-2Cu合金厚板组织及性能的影响[J]. 金属学报, 2018, 54(1): 100-108.
[11] 张可, 李昭东, 隋凤利, 朱正海, 章小峰, 孙新军, 黄贞益, 雍岐龙. 冷却速率对Ti-V-Mo复合微合金钢组织转变及力学性能的影响[J]. 金属学报, 2018, 54(1): 31-38.
[12] 陈瑞, 许庆彦, 郭会廷, 夏志远, 吴勤芳, 柳百成. Al-7Si-Mg铝合金拉伸过程应变硬化行为及力学性能模拟研究[J]. 金属学报, 2017, 53(9): 1110-1124.
[13] 胡小锋,杜瑜宾,闫德胜,戎利建. Cu的析出及其对FeCrMoCu合金阻尼性能和力学性能的影响[J]. 金属学报, 2017, 53(5): 601-608.
[14] 王晨充,张弛,杨志刚,苏杰,翁宇庆. 高Co-Ni二次硬化钢的设计准则与时效工艺分析[J]. 金属学报, 2017, 53(2): 175-182.
[15] 张明, 刘国权, 胡本芙. 镍基粉末高温合金热加工变形过程中显微组织不稳定性对热塑性的影响[J]. 金属学报, 2017, 53(11): 1469-1477.