Please wait a minute...
金属学报  2014, Vol. 50 Issue (7): 863-870    DOI: 10.3724/SP.J.1037.2013.00756
  本期目录 | 过刊浏览 |
喷射态7075合金回归再时效中预时效的研究*
苏睿明, 曲迎东(), 李荣德
沈阳工业大学材料科学与工程学院, 沈阳 110870
PRE-AGING OF RETROGRESSION AND RE-AGING OF SPRAY FORMED 7075 ALLOY
SU Ruiming, QU Yingdong(), LI Rongde
School of Material Science and Engineering, Shenyang University of Technology, Shenyang 110870
引用本文:

苏睿明, 曲迎东, 李荣德. 喷射态7075合金回归再时效中预时效的研究*[J]. 金属学报, 2014, 50(7): 863-870.
Ruiming SU, Yingdong QU, Rongde LI. PRE-AGING OF RETROGRESSION AND RE-AGING OF SPRAY FORMED 7075 ALLOY[J]. Acta Metall Sin, 2014, 50(7): 863-870.

全文: PDF(4248 KB)   HTML
摘要: 

采用拉伸测试、TEM和电导率测试等方法, 研究回归再时效(RRA)处理中预时效处理对喷射成形7075合金组织及性能的影响. 结果表明, 采用120 ℃, 16 h的欠时效预处理比120 ℃, 24 h峰值时效预处理和120 ℃, 32 h过时效预处理更有利于在回归处理过程中合金晶内析出相的回溶, 比120 ℃, 8 h的早期预时效处理更有助于晶界相在再时效处理后断续分布. 120 ℃, 16 h预时效处理的合金经RRA处理后, 其抗拉强度和屈服强度分别为782和726 MPa, 均高于T6峰值时效和常规回归再时效水平; 电导率为22.7 MS/m, 晶界析出相断续分布, 合金抗腐蚀性能优良.

关键词 7075铝合金喷射成形回归再时效预时效析出相    
Abstract

Retrogression and re-aging (RRA) treatments are divided into pre-aging, retrogression and re-aging. Although peak aging was used as the pre-aging of RRA treatment in the past, some different opinions were reported in recent years. The effects of pre-aging of RRA treatment on microstructure, mechanical properties and conductivity of spray formed 7075 aluminum alloy were investigated by TEM, tensile and conductivity test. The results show that the mechanical properties and conductivity of spray formed 7075 alloy could be improved by the under aging at 120 ℃ for 16 h as the pre-aging of RRA treatment. The properties of the 7xxx series aluminum alloys depend on matrix precipitates (MPt), grain boundary precipitates (GBPs) and precipitate free zones (PFZs). The tiny MPt can increase the tensile strength. The connected GBPs and narrow PFZs will lower the conductivity and the elongation of the alloy. The under aging is more beneficial for the re-dissolution of the MPts at retrogression treatment at 200 ℃ for 10 min, and is more conducive to interrupt distributions of the GBPs than the early aging after RRA treatment. With the under aging as the pre-aging treatment, the growth of the MPts was actively suppressed and the GBPs at grain boundaries are continuous. During retrogression treatment, the MPts were re-dissolved absolutely and the GBPs were transformed from a chain to dissociation. After re-aging treatment, lots of tiny dispersive MPts precipitated out again in matrix, the GBPs were totally separated and the PFZ were widened. After pre-aging at 120 ℃ for 16 h and RRA treatment, the tensile strength and yield strength of the alloy are 782 and 726 MPa, respectively, which are higher than that after peak aging treatment or conventional RRA treatment, the conductivity of the 7075 alloy is excellent with 22.7 MS/m.

Key words7075 aluminum alloy    spray forming    retrogression and re-aging    pre-aging    precipitate
收稿日期: 2013-11-23     
ZTFLH:  TG146.2  
基金资助:* 霍英东教育基金项目121054和辽宁省创新团队项目LT2012004资助
作者简介: null

苏睿明, 男, 1984年生, 博士生

图1  120 ℃预时效处理不同时间后7075铝合金的拉伸及导电性能
图2  120 ℃预时效处理不同时间再经200 ℃, 10 min回归处理后7075铝合金的拉伸及导电性能
图3  120 ℃预时效处理不同时间再经回归再时效处理(200 ℃, 10 min+120 ℃, 24 h)后7075铝合金的拉伸及导电性能
图4  120 ℃预时效处理不同时间后7075铝合金的TEM像
图5  120 ℃预时效处理不同时间再经回归处理(200 ℃, 10 min)后7075铝合金的TEM像
图6  120 ℃预时效处理不同时间再经回归再时效(RRA)处理(200 ℃, 10 min+120 ℃, 24 h)后7075铝合金的TEM像
图7  不同预时效状态下7075合金回归再时效处理过程中析出相演变示意图
[1] Wang Y Q, Wang Y, Chen P M, Shao Y W, Wang F H. Acta Metall Sin, 2011; 47: 455
[1] (王艳秋, 王 岳, 陈派明, 邵亚薇, 王福会. 金属学报, 2011; 47: 455)
[2] Marlaud T, Deschamps A, Bley F, Lefebvrec W, Baroux B. Acta Mater, 2010; 58: 248
[3] Marlaud T, Deschamps A, Bley F, Lefebvrec W, Baroux B. Acta Mater, 2010; 58: 4814
[4] George S L, Knutsen R D. J Mater Sci, 2012; 47: 4716
[5] Su R M, Qu Y D, Li R X, Li R D. Appl Mech Mater, 2012; 217: 1835
[6] Jeyakumar M, Kumar S, Gupta G S. Mater Manuf Proc, 2010; 25: 777
[7] Silva G, Rivolta B, Gerosa R, Derudi U. J Mater Eng Perform, 2013; 22: 210
[8] Ricker R E, Lee E U, Taylor R, Lei C, Pregger B, Lipnickas E. Metall Mater Trans, 2013; 44A: 1353
[9] Ning A L, Liu Z Y, Feng C, Zeng S M. Acta Metall Sin, 2006; 42: 1253
[9] (宁爱林, 刘志义, 冯 春, 曾苏民. 金属学报, 2006; 42: 1253)
[10] Fooladfar H, Hasnemi B, Younesi M. J Mater Eng Perform, 2010; 19: 852
[11] Arnold E M, Schubbe J J, Moran P J, Bayles R A. J Mater Eng Perform, 2012; 21: 2480
[12] Cina B M. US Pat, 3856584, 1974
[13] Li R D, Su R M, Qu Y D. J Mech Eng, 2013; 49(20): 22
[13] (李荣德, 苏睿明, 曲迎东. 机械工程学报, 2013; 49(20): 22)
[14] Su R M, Qu Y D, Li R D, Xie Q M, Wu Y S. Adv Mater Res, 2013; 774: 872
[15] Peng G, Chen K, Chen S, Fang H. Mater Sci Eng, 2011; A528: 4014
[16] Reda Y, Abdel-Karim R, Elmahallawi I. Mater Sci Eng, 2008; A485: 468
[17] Ohnishi T, Ibaraki Y, Ito T. Mater Trans JIM, 1989; 30: 601
[18] Higashi K, Ohnishi T, Tsukuda I. US Pat, 4713216, 1987
[19] Lin J, Kersker M M. US Pat, 5108520, 1992
[20] Han X L, Xiong B Q, Zhang Y A, Zhu B H, Li Z H, Li X W, Wang F, Liu H W. Chin J Nonferrous Met, 2012; 22: 3006
[20] (韩小磊, 熊柏青, 张永安, 朱宝宏, 李志辉, 李锡武, 王 锋, 刘红伟. 中国有色金属学报, 2012; 22: 3006)
[21] Islam M U, Wallace W. Mater Sci Technol, 1983; 10: 386
[22] Wang D, Ni D R, Ma Z Y. Mater Sci Eng, 2008; A494: 360
[23] Li G F, Zhang X M. Chin J Nonferrous Met, 2013; 23: 1234
[23] (李国锋, 张新明. 中国有色金属学报, 2013; 23: 1234)
[24] Jiang H, Faulkner R G. Acta Mater, 1996; 44: 1857
[25] Jiang H, Faulkner R G. Acta Mater, 1996; 44: 1865
[1] 梁凯, 姚志浩, 谢锡善, 姚凯俊, 董建新. 新型耐热合金SP2215组织与性能的关联性[J]. 金属学报, 2023, 59(6): 797-811.
[2] 刘继浩, 周健, 武会宾, 马党参, 徐辉霞, 马志俊. 喷射成形M3高速钢偏析成因及凝固机理[J]. 金属学报, 2023, 59(5): 599-610.
[3] 陈凯旋, 李宗烜, 王自东, Demange Gilles, 陈晓华, 张佳伟, 吴雪华, Zapolsky Helena. Cu-2.0Fe合金等温处理过程中富Fe析出相的形态演变[J]. 金属学报, 2023, 59(12): 1665-1674.
[4] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[5] 马国楠, 朱士泽, 王东, 肖伯律, 马宗义. SiC颗粒增强Al-Zn-Mg-Cu复合材料的时效行为和力学性能[J]. 金属学报, 2023, 59(12): 1655-1664.
[6] 冯迪, 朱田, 臧千昊, 李胤樹, 范曦, 张豪. 喷射成形过共晶AlSiCuMg合金的固溶行为[J]. 金属学报, 2022, 58(9): 1129-1140.
[7] 李小琳, 刘林锡, 李雅婷, 杨佳伟, 邓想涛, 王海丰. 单一 MX 型析出相强化马氏体耐热钢力学性能及蠕变行为[J]. 金属学报, 2022, 58(9): 1199-1207.
[8] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
[9] 高川, 邓运来, 王冯权, 郭晓斌. 蠕变时效对欠时效7075铝合金力学性能的影响[J]. 金属学报, 2022, 58(6): 746-759.
[10] 陈果, 王新波, 张仁晓, 马成悦, 杨海峰, 周利, 赵运强. 搅拌头转速对2507双相不锈钢搅拌摩擦加工组织及性能的影响[J]. 金属学报, 2021, 57(6): 725-735.
[11] 高一涵, 刘刚, 孙军. 耐热铝基合金研究进展:微观组织设计与析出策略[J]. 金属学报, 2021, 57(2): 129-149.
[12] 郭倩颖, 李彦默, 陈斌, 丁然, 余黎明, 刘永长. 高温时效处理对S31042耐热钢组织和蠕变性能的影响[J]. 金属学报, 2021, 57(1): 82-94.
[13] 刘峰, 王天乐. 基于热力学和动力学协同的析出相模拟[J]. 金属学报, 2021, 57(1): 55-70.
[14] 朱亮, 郭明星, 袁波, 庄林忠, 张济山. 时效路径对Al-0.7Mg-0.5Si-0.2Cu-0.5Zn合金沉淀析出行为的影响[J]. 金属学报, 2020, 56(7): 997-1006.
[15] 韩宝帅, 魏立军, 徐严谨, 马晓光, 刘雅菲, 侯红亮. 预变形对超高强Al-Zn-Mg-Cu合金时效组织与力学性能的影响[J]. 金属学报, 2020, 56(7): 1007-1014.